2 resultados para human activity recognition
em Digital Commons - Michigan Tech
Resumo:
Pacific salmon populations have declined due to human activity in the Pacific Northwest, resulting in decreased delivery of marine-derived nutrients to streams. Managers use artificial nutrient additions to increase juvenile salmon growth and survival and assume that added nutrients stimulate biofilm production, which propagates up the food web to juvenile salmon. We assessed biofilm responses (standing crop, nutrient limitation, and metabolism) to experimental additions of salmon carcass analog in tributaries of the Salmon River, Idaho in 2010 and 2011. Biofilm standing crop and nutrient limitation did not respond to analog, but primary productivity and respiration increased in the subset of streams where they were measured. Discrepancies between biofilm productivity and standing crop may occur if standing crop is constrained by physical and biological factors. Thus, conclusions about biofilm response to analog should not be based on standing crop alone and mitigation research may benefit from nutrient budgets of entire watersheds.
Resumo:
United States federal agencies assess flood risk using Bulletin 17B procedures which assume annual maximum flood series are stationary. This represents a significant limitation of current flood frequency models as the flood distribution is thereby assumed to be unaffected by trends or periodicity of atmospheric/climatic variables and/or anthropogenic activities. The validity of this assumption is at the core of this thesis, which aims to improve understanding of the forms and potential causes of non-stationarity in flood series for moderately impaired watersheds in the Upper Midwest and Northeastern US. Prior studies investigated non-stationarity in flood series for unimpaired watersheds; however, as the majority of streams are located in areas of increasing human activity, relative and coupled impacts of natural and anthropogenic factors need to be considered such that non-stationary flood frequency models can be developed for flood risk forecasting over relevant planning horizons for large scale water resources planning and management.