3 resultados para house, tree, windmill, church tower, figures, water
em Digital Commons - Michigan Tech
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
Two of the indicators of the UN Millennium Development Goals ensuring environmental sustainability are energy use and per capita carbon dioxide emissions. The increasing urbanization and increasing world population may require increased energy use in order to transport enough safe drinking water to communities. In addition, the increase in water use would result in increased energy consumption, thereby resulting in increased green-house gas emissions that promote global climate change. The study of multiple Municipal Drinking Water Distribution Systems (MDWDSs) that relates various MDWDS aspects--system components and properties--to energy use is strongly desirable. The understanding of the relationship between system aspects and energy use aids in energy-efficient design. In this study, components of a MDWDS, and/or the characteristics associated with the component are termed as MDWDS aspects (hereafter--system aspects). There are many aspects of MDWDSs that affect the energy usage. Three system aspects (1) system-wide water demand, (2) storage tank parameters, and (3) pumping stations were analyzed in this study. The study involved seven MDWDSs to understand the relationship between the above-mentioned system aspects in relation with energy use. A MDWDSs model, EPANET 2.0, was utilized to analyze the seven systems. Six of the systems were real and one was a hypothetical system. The study presented here is unique in its statistical approach using seven municipal water distribution systems. The first system aspect studied was system-wide water demand. The analysis involved analyzing seven systems for the variation of water demand and its impact on energy use. To quantify the effects of water use reduction on energy use in a municipal water distribution system, the seven systems were modeled and the energy usage quantified for various amounts of water conservation. It was found that the effect of water conservation on energy use was linear for all seven systems and that all the average values of all the systems' energy use plotted on the same line with a high R 2 value. From this relationship, it can be ascertained that a 20% reduction in water demand results in approximately a 13% savings in energy use for all seven systems analyzed. This figure might hold true for many similar systems that are dominated by pumping and not gravity driven. The second system aspect analyzed was storage tank(s) parameters. Various tank parameters: (1) tank maximum water levels, (2) tank elevation, and (3) tank diameter were considered in this part of the study. MDWDSs use a significant amount of electrical energy for the pumping of water from low elevations (usually a source) to higher ones (usually storage tanks). The use of electrical energy has an effect on pollution emissions and, therefore, potential global climate change as well. Various values of these tank parameters were modeled on seven MDWDSs of various sizes using a network solver and the energy usage recorded. It was found that when averaged over all seven analyzed systems (1) the reduction of maximum tank water level by 50% results in a 2% energy reduction, (2) energy use for a change in tank elevation is system specific, and (2) a reduction of tank diameter of 50% results in approximately a 7% energy savings. The third system aspect analyzed in this study was pumping station parameters. A pumping station consists of one or more pumps. The seven systems were analyzed to understand the effect of the variation of pump horsepower and the number of booster stations on energy use. It was found that adding booster stations could save energy depending upon the system characteristics. For systems with flat topography, a single main pumping station was found to use less energy. In systems with a higher-elevation neighborhood, however, one or more booster pumps with a reduced main pumping station capacity used less energy. The energy savings for the seven systems was dependent on the number of boosters and ranged from 5% to 66% for the analyzed five systems with higher elevation neighborhoods (S3, S4, S5, S6, and S7). No energy savings was realized for the remaining two flat topography systems, S1, and S2. The present study analyzed and established the relationship between various system aspects and energy use in seven MDWDSs. This aids in estimating the amount of energy savings in MDWDSs. This energy savings would ultimately help reduce Greenhouse gases (GHGs) emissions including per capita CO 2 emissions thereby potentially lowering the global climate change effect. This will in turn contribute to meeting the MDG of ensuring environmental sustainability.
Resumo:
This report is a case study of how Mwangalala community accesses water and how that access is maintained. Mwangalala community is located in the northern tip of Karonga district in Malawi, Africa. The case study evaluates how close the community is to meeting target 10 of the Millennium Development Goals, sustainable access to safe drinking water, and evaluates the current water system through Human Centered Design’s criteria of desirability, feasibility, and viability. It also makes recommendations to improve water security in Mwangalala community. Data was collected through two years of immersive observation, interviews with 30 families, and observing two wells on three separate occasions. The 30 interviews provided a sample size of over 10% of the community’s population. Participants were initially self-selected and then invited to participate in the research. I walked along community pathways and accepted invitations to join casual conversations in family compounds. After conversing I asked the family members if they would be willing to participate in my research by talking with me about water. Data collected from the interviews and the observations of two wells were compared and analyzed for common themes. Shallow wells or open wells represented the primary water source for 93% of interview participants. Boreholes were also present in the community, but produced unpalatable water due to high concentrations of dissolved iron and were not used as primary water sources. During observations 75% of community members who used the shallow well, primarily used for consumptive uses like cooking or dinking, were females. Boreholes were primarily used for non-consumptive uses such as watering crops or bathing and 77% of the users were male. Shallow wells could remain in disrepair for two months because the repairman was a volunteer, who was not compensated for the skilled labor required to repair the wells. Community members thought the maintenance fee went towards his salary, so did not compensate the repairman when he performed work. This miscommunication provided no incentive for the repairman to make well repairs a priority, and left community members frustrated with untimely repairs. Shallow wells with functional pumps failed to provide water when the water table levels drop during dry season, forcing community members to seek secondary or tertiary water sources. Open wells, converted from shallow wells after community members did not pay for repairs to the pump, represented 44% of the wells originally installed with Mark V hand pumps. These wells whose pumps were not repaired were located in fields and one beside a church. The functional wells were all located on school grounds or in family compounds, where responsibility for the well’s maintenance is clearly defined. Mwangalala community fails to meet Millennium Development goals because the wells used by the community do not provide sustainable access to safe drinking water. Open wells, used by half the participants in the study, lack a top covering to prevent contamination from debris and wildlife. Shallow well repair times are unsustainable, taking longer than two weeks to be repaired, primarily because the repair persons are expected to provide skilled labor to repair the wells without compensation. Improving water security for Mwangalala can be achieved by improving repair times on shallow wells and making water from boreholes palatable. There are no incentives for a volunteer repair person to fix wells in a timely manner. Repair times can be improved by reducing the number of wells a repair person is responsible for and compensating the person for the skilled labor provided. Water security would be further improved by removing iron particulates from borehole water, thus rendering it palatable. This is possible through point of use filtration utilizing ceramic candles; this would make pumped water available year-round.