8 resultados para hematite ore

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective flocculation and dispersion processes rely on differences in the surface chemistry of fine mineral particles (<25 >ìm) to allow for the concentration of specific minerals from an ore body. The effectiveness of selective flocculation and dispersion processes for the concentration of hematite (Fe2O3) ore are strongly dependent on the ionic content of the process water. The goal of this research was to analyze the ionic content of an operating selective flocculation and dispersion type hematite ore concentrator and determine how carbon dioxide affects the filtration of the final product. A detailed water chemistry analysis of the entire process was determined to show concentration profiles throughout the process. This information was used to explain process phenomena and promote future research into this subject. A subsequent laboratory study was conducted to show how carbon dioxide affects filtration rate and relate this effect to the zeta potential of the constituents of the concentrated hematite ore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron ore is one of the most important ores in the world. Over the past century, most mining of iron ore has been focused on magnetite (Fe3O4). As the name suggests, magnetite is magnetic in nature and is easily separated from gangue (unwanted) minerals through magnetic separation processes. Unfortunately, the magnetite ore bodies are diminishing. Because of this, there has been a recent drive to pursue technology that can economically separate hematite (Fe2O3) from its gangue minerals as hematite is a much more abundant source of iron. Most hematite ore has a very small liberation size that is frequently less than 25μm. Beneficiation of any ore with this fine of a liberation size requires advanced processing methods and is seldom pursued. A single process, known as selective flocculation and dispersion, has been successfully implemented at a plant scale for the beneficiation of fine liberation size hematite ore. Very little is known about this process as it was discovered by the U.S. Bureau of Mines by accident. The process is driven by water chemistry and surface chemistry modifications that enhance the separation of the hematite from its gangue minerals. This dissertation focuses on the role of water chemistry and process reagents in this hematite beneficiation process. It has been shown that certain ions, including calcium and magnesium, play a significant role in the process. These ions have a significant effect on the surface chemistry as reported by zeta potential studies. It was shown that magnesium ions within the process water have a more significant impact on surface chemistry than calcium ions due to steric hindrance effects at the hematite surface. It has also been shown that polyacrylic acid dispersants, if used in the process, can increase product quality (increase iron content, decrease phosphorus content, decrease silica content) substantially. Water, surface and reagent chemistry experiments were performed at a laboratory, pilot, and full plant scale during the course of this work. Many of the conclusions developed in the laboratory and pilot scale were found to be true at the full plant scale as well. These studies are the first published in history to develop theories of water chemistry and surface chemistry interactions at a full plant scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rooted in critical scholarship this dissertation is an interdisciplinary study, which contends that having a history is a basic human right. Advocating a newly conceived and termed, Solidarity-inspired History framework/practice perspective, the dissertation argues for and then delivers a restorative voice to working-class historical actors during the 1916 Minnesota Iron Ore Strike. Utilizing an interdisciplinary methodological framework the dissertation combines research methods from the Humanities and the Social Sciences to form a working-class history that is a corrective to standardized studies of labor in the late 19th and early 20th centuries. Oftentimes class interests and power relationships determine the dominant perspectives or voices established in history and disregard people and organizations that run counter to, or in the face of, customary or traditional American themes of patriotism, the Protestant work ethic, adherence to capitalist dogma, or United States exceptionalism. This dissertation counteracts these traditional narratives with a unique, perhaps even revolutionary, examination of the 1916 Minnesota Iron Ore Strike. The intention of this dissertation's critical perspective is to poke, prod, and prompt academics, historians, and the general public to rethink, and then think again, about the place of those who have been dislocated from or altogether forgotten, misplaced, or underrepresented in the historical record. Thus, the purpose of the dissertation is to give voice to historical actors in the dismembered past. Historical actors who have run counter to traditional American narratives often have their body of "evidence" disjointed or completely dislocated from the story of our nation. This type of disremembering creates an artificial recollection of our collective past, which de-articulates past struggles from contemporary groups seeking solidarity and social justice in the present. Class-conscious actors, immigrants, women, the GLBTQ community, and people of color have the right to be remembered on their own terms using primary sources and resources they produced. Therefore, similar to the Wobblies industrial union and its rank-and-file, this dissertation seeks to fan the flames of discontented historical memory by offering a working-class perspective of the 1916 Strike that seeks to interpret the actions, events, people, and places of the strike anew, thus restoring the voices of these marginalized historical actors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron ore concentrate pellets have the potential to fracture and abrade during transportation and handling, which produces unwanted fine particulates and dust. Consequently, pellet producers characterize the abrasion resistance of their pellets, using an Abrasion Index (AI), to indicate whether their products will produce unacceptable levels of fines. However, no one has ever investigated whether the AI correlates to pellet dustiness. During the course of this research, we investigated the relationship between AI and iron ore concentrate pellet dustiness using a wide range of industrial and laboratory pellet samples. The results showed that, in general, AI can be used to indicate high levels of dust. However, for good-quality pellets, there was no correlation between the two. Thus, dust generation from shipping and handling pellets will depend on the quantity of pellets handled and how much they are handled. These results also showed that the type of industrial furnace used to harden iron ore concentrate pellets may affect their fines generation and potential dustiness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat transfer is considered as one of the most critical issues for design and implement of large-scale microwave heating systems, in which improvement of the microwave absorption of materials and suppression of uneven temperature distribution are the two main objectives. The present work focuses on the analysis of heat transfer in microwave heating for achieving highly efficient microwave assisted steelmaking through the investigations on the following aspects: (1) characterization of microwave dissipation using the derived equations, (2) quantification of magnetic loss, (3) determination of microwave absorption properties of materials, (4) modeling of microwave propagation, (5) simulation of heat transfer, and (6) improvement of microwave absorption and heating uniformity. Microwave heating is attributed to the heat generation in materials, which depends on the microwave dissipation. To theoretically characterize microwave heating, simplified equations for determining the transverse electromagnetic mode (TEM) power penetration depth, microwave field attenuation length, and half-power depth of microwaves in materials having both magnetic and dielectric responses were derived. It was followed by developing a simplified equation for quantifying magnetic loss in materials under microwave irradiation to demonstrate the importance of magnetic loss in microwave heating. The permittivity and permeability measurements of various materials, namely, hematite, magnetite concentrate, wüstite, and coal were performed. Microwave loss calculations for these materials were carried out. It is suggested that magnetic loss can play a major role in the heating of magnetic dielectrics. Microwave propagation in various media was predicted using the finite-difference time-domain method. For lossy magnetic dielectrics, the dissipation of microwaves in the medium is ascribed to the decay of both electric and magnetic fields. The heat transfer process in microwave heating of magnetite, which is a typical magnetic dielectric, was simulated by using an explicit finite-difference approach. It is demonstrated that the heat generation due to microwave irradiation dominates the initial temperature rise in the heating and the heat radiation heavily affects the temperature distribution, giving rise to a hot spot in the predicted temperature profile. Microwave heating at 915 MHz exhibits better heating homogeneity than that at 2450 MHz due to larger microwave penetration depth. To minimize/avoid temperature nonuniformity during microwave heating the optimization of object dimension should be considered. The calculated reflection loss over the temperature range of heating is found to be useful for obtaining a rapid optimization of absorber dimension, which increases microwave absorption and achieves relatively uniform heating. To further improve the heating effectiveness, a function for evaluating absorber impedance matching in microwave heating was proposed. It is found that the maximum absorption is associated with perfect impedance matching, which can be achieved by either selecting a reasonable sample dimension or modifying the microwave parameters of the sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed paleomagnetic and rock-magnetic investigation was conducted on thirty six basaltic flows of the ~1095 Ma Portage Lake Volcanics. The flows were sampled along the East Adit of the Quincy Mine (Hancock, MI). Thirty two flows yielded well-defined primary magnetization directions carried by magnetite. A secondary magnetization component carried by hematite was also found in twenty nine flows. After correction for serial correlation between the flows, nineteen independent mean directions were calculated. The corresponding paleomagnetic pole is located at 25.5 °N, 182.1 °W (A95 = 3.5°). The new pole overlaps with the pole from the ~1087 Ma Lake Shore Traps suggesting a standstill of the North American plate during that time period. The low angular dispersion of virtual geomagnetic poles (S = 7.9°) suggests that the flows were erupted within a short time period, or that the strength of geomagnetic secular variation was lower than that of the recent field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dolomite [CaMg(CO3)2] is an intolerable impurity in phosphate ores due to its MgO content. Traditionally, the Florida phosphate industry has avoided mining high-MgO phosphate reserves due to the lack of an economically viable process for removal of dolomite. However, as the high grade phosphate reserves become depleted, more emphasis is being put on the development of a cost effective method for separating dolomite from high-MgO phosphate ores. In general, the phosphate industry demands a phosphate concentrate containing less than 1%MgO. Dolomite impurities have mineralogical properties that are very similar to the desired phosphate minerals (francolite), making the separation of the two minerals very difficult. Magnesium is primarily found as distinct dolomite-rich pebbles, very fine dolomite inclusions in predominately francolite pebbles, and magnesium substituted into the francolite structure. Jigging is a gravity separation process that attempts to take advantage of the density difference between the dolomite and francolite pebbles. A unique laboratory scale jig was designed and built at Michigan Tech for this study. Through a series of tests it was found that a pulsation rate of 200 pulse/minute, a stroke length of 1 inch, a water addition rate of 0.5gpm, and alumina ragging balls were optimum for this study. To investigate the feasibility of jigging for the removal of dolomite from phosphate ore, two high-MgO phosphate ores were tested using optimized jigging parameters: (1) Plant #1 was sized to 4.00x0.85mm and contained 1.55%MgO; (2) Plant #2 was sized to 3.40mmx0.85mm and contained 3.07% MgO. A sample from each plant was visually separated by hand into dolomite and francolite rich fractions, which were then analyzed to determine the minimum achievable MgO levels. For Plant #1 phosphate ore, a concentrate containing 0.89%MgO was achieved at a recovery of 32.0%BPL. For Plant #2, a phosphate concentrate containing 1.38%MgO was achieved at a recovery of 74.7%BPL. Minimum achievable MgO levels were determined to be 0.53%MgO for Plant #1 and 1.15%MgO for Plant #2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyzing “nuggety” gold samples commonly produces erratic fire assay results, due to random inclusion or exclusion of coarse gold in analytical samples. Preconcentrating gold samples might allow the nuggets to be concentrated and fire assayed separately. In this investigation synthetic gold samples were made using similar density tungsten powder and silica, and were preconcentrated using two approaches: an air jig and an air classifier. Current analytical gold sampling method is time and labor intensive and our aim is to design a set-up for rapid testing. It was observed that the preliminary air classifier design showed more promise than the air jig in terms of control over mineral recovery and preconcentrating bulk ore sub-samples. Hence the air classifier was modified with the goal of producing 10-30 grams samples aiming to capture all of the high density metallic particles, tungsten in this case. Effects of air velocity and feed rate on the recovery of tungsten from synthetic tungsten-silica mixtures were studied. The air classifier achieved optimal high density metal recovery of 97.7% at an air velocity of 0.72 m/s and feed rate of 160 g/min. Effects of density on classification were investigated by using iron as the dense metal instead of tungsten and the recovery was seen to drop from 96.13% to 20.82%. Preliminary investigations suggest that preconcentration of gold samples is feasible using the laboratory designed air classifier.