3 resultados para functional group diversity

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, peatlands occupy a small portion of terrestrial land area but contain up to one-third of all soil organic carbon. This carbon pool is vulnerable to increased decomposition under projected climate change scenarios but little is known about how plant functional groups will influence microbial communities responsible for regulating carbon cycling processes. Here we examined initial shifts in microbial community structure within two sampling depths under plant functional group manipulations in mesocosms of an oligotrophic bog. Microbial community composition for bacteria and archaea was characterized using targeted 16S rRNA Illumina gene sequencing. We found statistically distinct spatial patterns between the more shallow 10-20 cm sampling depth and the deeper 30-40 cm depth. Significant effects by plant functional groups were found only within the 10-20 cm depth, indicating plant-mediated microbial community shifts respond more quickly near the peat surface. Specifically, the relative abundance of Acidobacteria decreased under ericaceous shrub treatments in the 10-20 cm depth and was replaced by increased abundance of Gammaproteobacteria and Bacteroidetes. In contrast, the sedge rhizosphere continued to be dominated by Acidobacteria but also promoted an increase in the relative recovery of Alphaproteobacteria and Verrucomicrobia. These initial results suggest microbial communities under ericaceous shrubs may be limited by anaerobic soil conditions accompanying high water table conditions, while sedge aerenchyma may be promoting aerobic taxa in the upper peat rhizosphere regardless of ambient soil oxygen limitations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As foundational species, oaks (Quercus : Fagaceae) support the activities of both humans and wildlife. However, many oaks in North America are declining, a crisis exacerbated by the previous disappearance of other hard mast-producing trees. In addition, the economic demands placed on this drought-tolerant group may intensify if climate change extirpates other, relatively mesophytic species. Genetic tools can help address these management challenges. To this end, we developed a suite of 27 microsatellite markers, of which 22 are derived from expressed sequence tags (ESTs). Many of these markers bear significant homology to known genes and may be able to directly assay functional genetic variation. Markers obtained from enriched microsatellite libraries, on the other hand, are typically located in heterochromatic regions and should reflect demographic processes. Considered jointly, genic and genomic microsatellites can elucidate patterns of gene-flow and natural selection, which are fundamental to both an organism's evolutionary ecology and conservation biology. To this end, we employed the developed markers in an FST-based genome scan to detect the signature of divergent selection among the red oaks (Quercus section Lobatae). Three candidate genes with putative roles in stress responses demonstrated patterns of diversity consistent with adaptation to heterogeneous selective pressures. These genes may be important in both local genetic adaptation within species and divergence among them. Next, we used an isolation-with-migration model to quantify levels of gene-flow among four red oaks species during speciation. Both speciation in allopatry and speciation with gene-flow were found to be major drivers of red oak biodiversity. Loci playing a key role in speciation are also likely to be ecologically important within species