7 resultados para free-electron laser

em Digital Commons - Michigan Tech


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method and results were compared to conventional electrostatic double probe measurements performed at the same thruster conditions. Electron temperature was found to range from approximately 1 – 40 eV and density ranged from approximately 1.0 x 1017 m-3 to 1.3 x 1018 m-3 over discharge voltages from 250 to 450 V and mass flow rates of 40 to 80 SCCM using xenon propellant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The report reviews the technology of Free-space Optical Communication (FSO) and simulation methods for testing the performance of diverged beam in the technology. In addition to the introduction, the theory of turbulence and its effect over laser is also reviewed. In the simulation revision chapter, on-off keying (OOK) and diverged beam is assumed in the transmitter, and in the receiver, avalanche photodiode (APD) is utilized to convert the photon stream into electron stream. Phase screens are adopted to simulate the effect of turbulence over the phase of the optical beam. Apart from this, the method of data processing is introduced and retrospected. In the summary chapter, there is a general explanation of different beam divergence and their performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A free-space optical (FSO) laser communication system with perfect fast-tracking experiences random power fading due to atmospheric turbulence. For a FSO communication system without fast-tracking or with imperfect fast-tracking, the fading probability density function (pdf) is also affected by the pointing error. In this thesis, the overall fading pdfs of FSO communication system with pointing errors are calculated using an analytical method based on the fast-tracked on-axis and off-axis fading pdfs and the fast-tracked beam profile of a turbulence channel. The overall fading pdf is firstly studied for the FSO communication system with collimated laser beam. Large-scale numerical wave-optics simulations are performed to verify the analytically calculated fading pdf with collimated beam under various turbulence channels and pointing errors. The calculated overall fading pdfs are almost identical to the directly simulated fading pdfs. The calculated overall fading pdfs are also compared with the gamma-gamma (GG) and the log-normal (LN) fading pdf models. They fit better than both the GG and LN fading pdf models under different receiver aperture sizes in all the studied cases. Further, the analytical method is expanded to the FSO communication system with beam diverging angle case. It is shown that the gamma pdf model is still valid for the fast-tracked on-axis and off-axis fading pdfs with point-like receiver aperture when the laser beam is propagated with beam diverging angle. Large-scale numerical wave-optics simulations prove that the analytically calculated fading pdfs perfectly fit the overall fading pdfs for both focused and diverged beam cases. The influence of the fast-tracked on-axis and off-axis fading pdfs, the fast-tracked beam profile, and the pointing error on the overall fading pdf is also discussed. At last, the analytical method is compared with the previous heuristic fading pdf models proposed since 1970s. Although some of previously proposed fading pdf models provide close fit to the experiment and simulation data, these close fits only exist under particular conditions. Only analytical method shows accurate fit to the directly simulated fading pdfs under different turbulence strength, propagation distances, receiver aperture sizes and pointing errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular interactions between the host molecule, perthiolated beta-cyclodextrin (CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid (FC), have been inestigated theoretically in both the gas and aqueous phases. The major computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6- 31G. MP2 electronic energies were also computed based at the geometries optimized by both the RHF and B3LYP methods in the gas phase to establish a better estimate of the correlation effect. The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G levels using the PCM model. The most stable structures optimized in gas phase by both the RHF and B3LYP methods were used for the computations in solution. A method to systematically manipulate the relative position and orientation between the interacting molecules is proposed. In the gas phase, six trials with different host-guest relative positions and orientations were completed successfully with the B3LYP method for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF method. In the gas phase, the best results from the RHF method gives for the association Gibbs free energy (ΔG°) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. And the best results from the B3LYP method have ΔG° equal to -47.57kj/mol for CD-AD and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG° based on the geometries from both methods. For the RHF structure, the MP2 computations lowered ΔG° to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CDFC. The RHF solvent phase calculations yielded following results: ΔG°(aq) equals 107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the RHF method, the B3LYP method provided clearly better solvent phase results with ΔG° (aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC. These results qualitatively explain the experimental observations. However quantitatively they are in poor agreement with the experimental values available in the literature and those recently published by Liu et al. And the reason is believed to be omission of hydrophobic contribution to the association. Determining the global geometrical minima for these very large systems was very difficult and computationally time consuming, but after a very thorough search, these were identified. A relevant result of this search is that when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only partially embedded inside the CD cavity. The totally embedded complexes were found to have significantly higher energies. The semiempirical method, ZINDO, was employed to investigate the effect of complexation on the first electronic excitation of CD anchored to a metal nano-particle. The computational results revealed that after complexation to FC, the transition intensity declines to about 25% of the original value, and after complexation with AD, the intensity drops almost 50%. The tighter binding and transition intensity of CD-AD qualitatively agrees with the experimental result that the addition of AD to a solution of CD and FC restores the fluorescence of CD that was quenched by the addition of FC. A method to evaluate the “hydrophobic force” effect is proposed for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free space optical (FSO) communication links can experience extreme signal degradation due to atmospheric turbulence induced spatial and temporal irradiance fuctuations (scintillation) in the laser wavefront. In addition, turbulence can cause the laser beam centroid to wander resulting in power fading, and sometimes complete loss of the signal. Spreading of the laser beam and jitter are also artifacts of atmospheric turbulence. To accurately predict the signal fading that occurs in a laser communication system and to get a true picture of how this affects crucial performance parameters like bit error rate (BER) it is important to analyze the probability density function (PDF) of the integrated irradiance fuctuations at the receiver. In addition, it is desirable to find a theoretical distribution that accurately models these ?uctuations under all propagation conditions. The PDF of integrated irradiance fuctuations is calculated from numerical wave-optic simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to very strong. Our results show that the gamma-gamma PDF provides a good fit to the simulated data distribution for all aperture sizes studied from weak through moderate scintillation. In strong scintillation, the gamma-gamma PDF is a better fit to the distribution for point-like apertures and the lognormal PDF is a better fit for apertures the size of the atmospheric spatial coherence radius ρ0 or larger. In addition, the PDF of received power from a Gaussian laser beam, which has been adaptively compensated at the transmitter before propagation to the receiver of a FSO link in the moderate scintillation regime is investigated. The complexity of the adaptive optics (AO) system is increased in order to investigate the changes in the distribution of the received power and how this affects the BER. For the 10 km link, due to the non-reciprocal nature of the propagation path the optimal beam to transmit is unknown. These results show that a low-order level of complexity in the AO provides a better estimate for the optimal beam to transmit than a higher order for non-reciprocal paths. For the 20 km link distance it was found that, although minimal, all AO complexity levels provided an equivalent improvement in BER and that no AO complexity provided the correction needed for the optimal beam to transmit. Finally, the temporal power spectral density of received power from a FSO communication link is investigated. Simulated and experimental results for the coherence time calculated from the temporal correlation function are presented. Results for both simulation and experimental data show that the coherence time increases as the receiving aperture diameter increases. For finite apertures the coherence time increases as the communication link distance is increased. We conjecture that this is due to the increasing speckle size within the pupil plane of the receiving aperture for an increasing link distance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.