1 resultado para fish wastewater from slaughterhouse

em Digital Commons - Michigan Tech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Waste effluents from the forest products industry are sources of lignocellulosic biomass that can be converted to ethanol by yeast after pretreatment. However, the challenge of improving ethanol yields from a mixed pentose and hexose fermentation of a potentially inhibitory hydrolysate still remains. Hardboard manufacturing process wastewater (HPW) was evaluated at a potential feedstream for lignocellulosic ethanol production by native xylose-fermenting yeast. After screening of xylose-fermenting yeasts, Scheffersomyces stipitis CBS 6054 was selected as the ideal organism for conversion of the HPW hydrolysate material. The individual and synergistic effects of inhibitory compounds present in the hydrolysate were evaluated using response surface methodology. It was concluded that organic acids have an additive negative effect on fermentations. Fermentation conditions were also optimized in terms of aeration and pH. Methods for improving productivity and achieving higher ethanol yields were investigated. Adaptation to the conditions present in the hydrolysate through repeated cell sub-culturing was used. The objectives of this present study were to adapt S. stipitis CBS6054 to a dilute-acid pretreated lignocellulosic containing waste stream; compare the physiological, metabolic, and proteomic profiles of the adapted strain to its parent; quantify changes in protein expression/regulation, metabolite abundance, and enzyme activity; and determine the biochemical and molecular mechanism of adaptation. The adapted culture showed improvement in both substrate utilization and ethanol yields compared to the unadapted parent strain. The adapted strain also represented a growth phenotype compared to its unadapted parent based on its physiological and proteomic profiles. Several potential targets that could be responsible for strain improvement were identified. These targets could have implications for metabolic engineering of strains for improved ethanol production from lignocellulosic feedstocks. Although this work focuses specifically on the conversion of HPW to ethanol, the methods developed can be used for any feedstock/product systems that employ a microbial conversion step. The benefit of this research is that the organisms will the optimized for a company's specific system.