3 resultados para fine-grained control

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a paleoclimatic/paleoenvironmental study conducted on clastic cave sediments of the Moravian Karst, Czech Republic. The study is based on environmental magnetic techniques, yet a wide range of other scientific methods was used to obtain a clearer picture of the Quaternary climate. My thesis also presents an overview of the significance of cave deposits for paleoclimatic reconstructions, explains basic environmental magnetic techniques and offers background information on the study area – a famous karst region in Central Europe with a rich history. In Kulna Cave magnetic susceptibility variations and in particular variations in pedogenic susceptibility yield a detailed record of the palaeoenvironmental conditions during the Last Glacial Stage. The Kulna long-term climatic trends agree with the deep-sea SPECMAP record, while the short-term oscillations correlate with rapid changes in the North Atlantic sea surface temperatures. Kulna Cave sediments reflect the intensity of pedogenesis controlled by short-term warmer events and precipitation over the mid-continent and provide a link between continental European climate and sea surface temperatures in the North Atlantic during the Last Glacial Stage. Given the number of independent climate proxies determined from the entrance facies of the cave and their high resolution, Kulna is an extremely important site for studying Late Pleistocene climate. In the interior of Spiralka Cave, a five meter high section of fine grained sediments deposited during floods yields information on the climatic and environmental conditions of the last millenium. In the upper 1.5 meters of this profile, mineral magnetic and other non-magnetic data indicate that susceptibility variations are controlled by the concentration of magnetite and its magnetic grain size. Comparison of our susceptibility record to the instrumental record of winter temperature anomalies shows a remarkable correlation. This correlation is explained by coupling of the flooding events, cultivation of land and pedogenetic processes in the cave catchment area. A combination of mineral magnetic and geochemical proxies yields a detail picture of the rapidly evolving climate of the near past and tracks both natural and human induced environmental changes taking place in the broader region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Collingwood Member is a mid to late Ordovician self-sourced reservoir deposited across the northern Michigan Basin and parts of Ontario, Canada. Although it had been previously studied in Canada, there has been relatively little data available from the Michigan subsurface. Recent commercial interest in the Collingwood has resulted in the drilling and production of several wells in the state of Michigan. An analysis of core samples, measured laboratory data, and petrophysical logs has yielded both a quantitative and qualitative understanding of the formation in the Michigan Basin. The Collingwood is a low permeability and low porosity carbonate package that is very high in organic content. It is composed primarily of a uniformly fine grained carbonate matrix with lesser amounts of kerogen, silica, and clays. The kerogen content of the Collingwood is finely dispersed in the clay and carbonate mineral phases. Geochemical and production data show that both oil and gas phases are present based on regional thermal maturity. The deposit is richest in the north-central part of the basin with thickest deposition and highest organic content. The Collingwood is a fairly thin deposit and vertical fractures may very easily extend into the surrounding formations. Completion and treatment techniques should be designed around these parameters to enhance production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the compressive properties of concrete incorporating Mature Fine Tailings (MFTs) waste stream from a tar sands mining operation. The objectives of this study are to investigate material properties of the MFT material itself, as well as establish general feasibility of the utilization of MFT material in concrete mixtures through empirical data and visual observations. Investigations undertaken in this study consist of moisture content, materials finer than No. 200 sieve, Atterburg Limits as well as visual observations performed on MFT material as obtained. Control concrete mixtures as well as MFT replacement mixture designs (% by wt. of water) were guided by properties of the MFT material that were experimentally established. The experimental design consists of compression testing of 4”-diameter concrete cylinders of a control mixture, 30% MFT, 50% MFT and 70% MFT replacement mixtures with air-entrainer additive, as well as a control mixture and 30% MFT replacement mixture with no air-entrainer. A total of 6 mixtures (2 control mixtures, 4 replacement mixtures) moist-cured in lime water after 24 hours initial curing were tested for ultimate compressive strength at 7 days and 28 days in accordance to ASTM C39. The test results of fresh concrete material show that the addition of air-entrainer to the control mixture increases slump from 4” to 5.5”. However, the use of MFT material in concrete mixtures significantly decreases slump as compared to controls. All MFT replacement mixtures (30%, 50%, and 70%) with air-entrainer present slumps of 1”. 30% MFT with no air-entrainer presents a slump of 1.5”. It was found that 7-day ultimate compressive stress was not a good predictor of 28-day ultimate compressive stress. 28-day results indicate that the use of MFT material in concrete with air-entrainer decreases ultimate compressive stress for 30%, 50% and 70% MFT replacement amounts by 14.2%, 17.3% and 25.1% respectively.