2 resultados para everyday life - Russia
em Digital Commons - Michigan Tech
Resumo:
The concept of feminist metistic resilience postulates that the voiceless, the marginalized and the minority in societies employ strategies in order to turn tables in their favor. This study presents a qualitative analysis of how women, considered to be the minority, negotiate their situatedness in science fields in order to effect change in their lives or that of the society and why they become successful. By “situatedness,” I refer to the everyday life of women as they live and encounter people, society and culture, especially, the life of women who have transcended the culturally stipulated role of women and are excelling in a male dominated field. The study, in different dimensions, conceptualizes the reason for the fewer number of women in science; looks at how scientific methods and practices inhibit the development of women in science; and, finally, interrogates the question of objectivity in science. It becomes apparent, through feminist metistic resilience, that women become successful when they accept conventional practices in scientific arrangements and structures. They accept the practices by embracing and not questioning structures and arrangements that have shaped the field of science and by shifting shapes and assuming different forms in order to adapt to conditions they encounter. Apart from adapting and shape shifting, the women also become successful through environmental and social influences. My analysis suggests that more women can be encouraged to pursue science when women practicing science begin to question structures and arrangements that have shaped the practice of science over the centuries. The overall findings of the research provide implications for policy makers, educators and feminist researchers.
Resumo:
Many types of materials at nanoscale are currently being used in everyday life. The production and use of such products based on engineered nanomaterials have raised concerns of the possible risks and hazards associated with these nanomaterials. In order to evaluate and gain a better understanding of their effects on living organisms, we have performed first-principles quantum mechanical calculations and molecular dynamics simulations. Specifically, we will investigate the interaction of nanomaterials including semiconducting quantum dots and metallic nanoparticles with various biological molecules, such as dopamine, DNA nucleobases and lipid membranes. Firstly, interactions of semiconducting CdSe/CdS quantum dots (QDs) with the dopamine and the DNA nucleobase molecules are investigated using similar quantum mechanical approach to the one used for the metallic nanoparticles. A variety of interaction sites are explored. Our results show that small-sized Cd4Se4 and Cd4S4 QDs interact strongly with the DNA nucleobase if a DNA nucleobase has the amide or hydroxyl chemical group. These results indicate that these QDs are suitable for detecting subcellular structures, as also reported by experiments. The next two chapters describe a preparation required for the simulation of nanoparticles interacting with membranes leading to accurate structure models for the membranes. We develop a method for the molecular crystalline structure prediction of 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), 1,2-Dimyristoyl-sn-glycero-3-phosphorylethanolamine (DMPE) and cyclic di-amino acid peptide using first-principles methods. Since an accurate determination of the structure of an organic crystal is usually an extremely difficult task due to availability of the large number of its conformers, we propose a new computational scheme by applying knowledge of symmetry, structural chemistry and chemical bonding to reduce the sampling size of the conformation space. The interaction of metal nanoparticles with cell membranes is finally carried out by molecular dynamics simulations, and the results are reported in the last chapter. A new force field is developed which accurately describes the interaction forces between the clusters representing small-sized metal nanoparticles and the lipid bilayer molecules. The permeation of nanoparticles into the cell membrane is analyzed together with the RMSD values of the membrane modeled by a lipid bilayer. The simulation results suggest that the AgNPs could cause the same amount of deformation as the AuNPs for the dysfunction of the membrane.