2 resultados para environmental sciences
em Digital Commons - Michigan Tech
Resumo:
Denitrification is an important process of global nitrogen cycle as it removes reactive nitrogen from the biosphere, and acts as the primary source of nitrous oxide (N2O). This thesis seeks to gain better understanding of the biogeochemistry of denitrification by investigating the process from four different aspects: genetic basis, enzymatic kinetics, environmental interactions, and environmental consequences. Laboratory and field experiments were combined with modeling efforts to unravel the complexity of denitrification process under microbiological and environmental controls. Dynamics of denitrification products observed in laboratory experiments revealed an important role of constitutive denitrification enzymes, whose presence were further confirmed with quantitative analysis of functional genes encoding nitrite reductase and nitrous oxide reductase. A metabolic model of denitrification developed with explicit denitrification enzyme kinetics and representation of constitutive enzymes successfully reproduced the dynamics of N2O and N2 accumulation observed in the incubation experiments, revealing important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Field studies demonstrated complex interaction of belowground N2O production, consumption and transport, resulting in two pulse pattern in the surface flux. Coupled soil gas diffusion/denitrification model showed great potential in simulating the dynamics of N2O below ground, with explicit representation of the activity of constitutive denitrification enzymes. A complete survey of environmental variables showed distinct regulation regimes on the denitrification activity from constitutive enzymes and new synthesized enzymes. Uncertainties in N2O estimation with current biogeochemical models may be reduced as accurate simulation of the dynamics of N2O in soil and surface fluxes is possible with a coupled diffusion/denitrification model that includes explicit representation of denitrification enzyme kinetics. In conclusion, denitrification is a complex ecological function regulated at cellular level. To assess the environmental consequences of denitrification and develop useful tools to mitigate N2O emissions require a comprehensive understanding of the regulatory network of denitrification with respect to microbial physiology and environmental interactions.
Resumo:
Young adult migration is a key factor in community development. The goal of this paper is to study what kinds of places attract young adults and what kinds are losing them. Linear regression is conducted to analyze what place-specific factors explain migration patterns among young adults. These factors include economic, social, and environmental variables. This study finds that social and environmental factors are just as important as economic ones. Specifically, employment in the arts increases young adult net migration. Environmental variables, for example, natural amenities and protected federal lands are particularly important in rural settings in attracting young adults. These findings suggest that policy makers interested in attracting and retaining young adults should pay closer attention to social and environmental factors and consider creating more opportunities for arts employment in general. For rural areas, improving the attractiveness of natural amenities and better protection of federal lands is also recommended.