3 resultados para environmental costs
em Digital Commons - Michigan Tech
Resumo:
Sustainable development has only recently started examining the existing infrastructure, and a key aspect of this is hazard mitigation. To examine buildings under a sustainable perspective requires an understanding of a building's life-cycle environmental costs, including the consideration of associated environmental impacts induced by earthquake damage. Damage repair costs lead to additional material and energy consumption, leading to harmful environmental impacts. Merging results obtained from a seismic evaluation and life-cycle analysis for buildings will give a novel outlook on sustainable design decisions. To evaluate the environmental impacts caused by buildings, long-term impacts accrued throughout a building's lifetime and impacts associated with damage repair need to be quantified. A method and literature review for completing this examination has been developed and is discussed. Using software Athena and HAZUS-MH, this study evaluated the performance of steel and concrete buildings considering their life-cycle assessments and earthquake resistance. It was determined that code design-level greatly effects a building repair and damage estimations. This study presented two case study buildings and found specific results that were obtained using several premade assumptions. Future research recommendations were provided to make this methodology more useful in real-world applications. Examining cost and environmental impacts that a building has through, a cradle-to-grave analysis and seismic damage assessment will help reduce material consumption and construction activities from taking place before and after an earthquake event happens.
Resumo:
Rising fuel prices and environmental concerns are threatening the stability of current electrical grid systems. These factors are pushing the automobile industry towards more effcient, hybrid vehicles. Current trends show petroleum is being edged out in favor of electricity as the main vehicular motive force. The proposed methods create an optimized charging control schedule for all participating Plug-in Hybrid Electric Vehicles in a distribution grid. The optimization will minimize daily operating costs, reduce system losses, and improve power quality. This requires participation from Vehicle-to-Grid capable vehicles, load forecasting, and Locational Marginal Pricing market predictions. Vehicles equipped with bidirectional chargers further improve the optimization results by lowering peak demand and improving power quality.
Resumo:
Although natural gas has been praised as a clean and abundant energy source, the varying impacts and uncertainties surrounding the process of extracting natural gas from unconventional sources, known as horizontal high-volume hydraulic fracturing (HVHF) or “fracking,” have raised important concerns. The practice of HVHF is expanding so quickly that the full impacts are not yet known. This thesis project, using a grounded theory methodological approach, explores the risks and benefits associated with HVHF as recognized by the residents of two Michigan counties, one that currently produces natural gas by HVHF (Crawford County) and one that does not (Barry County). Through an analysis of media content related to HVHF in each case study site and interviews with stakeholders in both counties, this study examines perceptions of risks and benefits by comparing two communities that differ in their level of experience with HVHF operations, contributing to our understanding of how perceptions of risks and benefits are shaped by natural gas development. The comparative analysis of the case study counties revealed similarities and differences between the case study counties. Overall, Barry County residents identified fewer benefits and more risks, and had stronger negative perceptions than Crawford County residents. This study contributes to the social science literature by developing a richer theoretical frame for understanding perceptions of HVHF and also shares recommendations for industry, organizations, regulators, and government leaders interested in effectively communicating with community stakeholders about the benefits and risks of HVHF.