5 resultados para economic production model
em Digital Commons - Michigan Tech
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest and most important deposits is the Marcellus Shale. Hydraulic fracturing and horizontal drilling have allowed for the technical feasibility of production, but concerns exist regarding the economics of shale gas production. These concerns are related to limited production and economic data for shale gas wells, declines in the rates of production, falling natural gas prices, oversupply issues coupled with slow growth in U.S. natural gas demand, and rising production costs. An attempt to determine profitability was done through the economic analysis of an average shale gas well using data that is representative of natural gas production from 2009 to 2011 in the Marcellus Shale. Despite the adverse conditions facing the shale gas industry it is concluded from the results of this analysis that a shale gas well in the Marcellus Shale is profitable based on NPV, IRR and breakeven price calculations.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.