6 resultados para dynamic parameters identification

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk metallic glasses (BMGs) exhibit superior mechanical properties as compared with other conventional materials and have been proposed for numerous engineering and technological applications. Zr/Hf-based BMGs or tungsten reinforced BMG composites are considered as a potential replacement for depleted uranium armor-piercing projectiles because of their ability to form localized shear bands during impact, which has been known to be the dominant plastic deformation mechanism in BMGs. However, in conventional tensile, compressive and bending tests, limited ductility has been observed because of fracture initiation immediately following the shear band formation. To fully investigate shear band characteristics, indentation tests that can confine the deformation in a limited region have been pursued. In this thesis, a detailed investigation of thermal stability and mechanical deformation behavior of Zr/Hf-based BMGs is conducted. First, systematic studies had been implemented to understand the influence of relative compositions of Zr and Hf on thermal stability and mechanical property evolution. Second, shear band evolution under indentations were investigated experimentally and theoretically. Three kinds of indentation studies were conducted on BMGs in the current study. (a) Nano-indentation to determine the mechanical properties as a function of Hf/Zr content. (b) Static Vickers indentation on bonded split specimens to investigate the shear band evolution characteristics beneath the indention. (c) Dynamic Vickers indentation on bonded split specimens to investigate the influence of strain rate. It was found in the present work that gradually replacing Zr by Hf remarkably increases the density and improves the mechanical properties. However, a slight decrease in glass forming ability with increasing Hf content has also been identified through thermodynamic analysis although all the materials in the current study were still found to be amorphous. Many indentation studies have revealed only a few shear bands surrounding the indent on the top surface of the specimen. This small number of shear bands cannot account for the large plastic deformation beneath the indentations. Therefore, a bonded interface technique has been used to observe the slip-steps due to shear band evolution. Vickers indentations were performed along the interface of the bonded split specimen at increasing loads. At small indentation loads, the plastic deformation was primarily accommodated by semi-circular primary shear bands surrounding the indentation. At higher loads, secondary and tertiary shear bands were formed inside this plastic zone. A modified expanding cavity model was then used to predict the plastic zone size characterized by the shear bands and to identify the stress components responsible for the evolution of the various types of shear bands. The applicability of various hardness—yield-strength ( H −σγ ) relationships currently available in the literature for bulk metallic glasses (BMGs) is also investigated. Experimental data generated on ZrHf-based BMGs in the current study and those available elsewhere on other BMG compositions were used to validate the models. A modified expanding-cavity model, employed in earlier work, was extended to propose a new H −σγ relationship. Unlike previous models, the proposed model takes into account not only the indenter geometry and the material properties, but also the pressure sensitivity index of the BMGs. The influence of various model parameters is systematically analyzed. It is shown that there is a good correlation between the model predictions and the experimental data for a wide range of BMG compositions. Under dynamic Vickers indentation, a decrease in indentation hardness at high loading rate was observed compared to static indentation hardness. It was observed that at equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Different from static indentation, two sets of widely spaced semi-circular shear bands with two different curvatures were observed. The observed shear band pattern and the strain rate softening in indentation hardness were rationalized based on the variations in the normal stress on the slip plane, the strain rate of shear and the temperature rise associated with the indentation deformation. Finally, a coupled thermo-mechanical model is proposed that utilizes a momentum diffusion mechanism for the growth and evolution of the final spacing of shear bands. The influence of strain rate, confinement pressure and critical shear displacement on the shear band spacing, temperature rise within the shear band, and the associated variation in flow stress have been captured and analyzed. Consistent with the known pressure sensitive behavior of BMGs, the current model clearly captures the influence of the normal stress in the formation of shear bands. The normal stress not only reduces the time to reach critical shear displacement but also causes a significant temperature rise during the shear band formation. Based on this observation, the variation of shear band spacing in a typical dynamic indentation test has been rationalized. The temperature rise within a shear band can be in excess of 2000K at high strain rate and high confinement pressure conditions. The associated drop in viscosity and flow stress may explain the observed decrease in fracture strength and indentation hardness. The above investigations provide valuable insight into the deformation behavior of BMGs under static and dynamic loading conditions. The shear band patterns observed in the above indentation studies can be helpful to understand and model the deformation features under complex loading scenarios such as the interaction of a penetrator with armor. Future work encompasses (1) extending and modifying the coupled thermo-mechanical model to account for the temperature rise in quasistatic deformation; and (2) expanding this model to account for the microstructural variation-crystallization and free volume migration associated with the deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulate matter (PM) emissions standards set by the US Environmental Protection Agency (EPA) have become increasingly stringent over the years. The EPA regulation for PM in heavy duty diesel engines has been reduced to 0.01 g/bhp-hr for the year 2010. Heavy duty diesel engines make use of an aftertreatment filtration device, the Diesel Particulate Filter (DPF). DPFs are highly efficient in filtering PM (known as soot) and are an integral part of 2010 heavy duty diesel aftertreatment system. PM is accumulated in the DPF as the exhaust gas flows through it. This PM needs to be removed by oxidation periodically for the efficient functioning of the filter. This oxidation process is also known as regeneration. There are 2 types of regeneration processes, namely active regeneration (oxidation of PM by external means) and passive oxidation (oxidation of PM by internal means). Active regeneration occurs typically in high temperature regions, about 500 - 600 °C, which is much higher than normal diesel exhaust temperatures. Thus, the exhaust temperature has to be raised with the help of external devices like a Diesel Oxidation Catalyst (DOC) or a fuel burner. The O2 oxidizes PM producing CO2 as oxidation product. In passive oxidation, one way of regeneration is by the use of NO2. NO2 oxidizes the PM producing NO and CO2 as oxidation products. The passive oxidation process occurs at lower temperatures (200 - 400 °C) in comparison to the active regeneration temperatures. Generally, DPF substrate walls are washcoated with catalyst material to speed up the rate of PM oxidation. The catalyst washcoat is observed to increase the rate of PM oxidation. The goal of this research is to develop a simple mathematical model to simulate the PM depletion during the active regeneration process in a DPF (catalyzed and non-catalyzed). A simple, zero-dimensional kinetic model was developed in MATLAB. Experimental data required for calibration was obtained by active regeneration experiments performed on PM loaded mini DPFs in an automated flow reactor. The DPFs were loaded with PM from the exhaust of a commercial heavy duty diesel engine. The model was calibrated to the data obtained from active regeneration experiments. Numerical gradient based optimization techniques were used to estimate the kinetic parameters of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective catalytic reduction system is a well established technology for NOx emissions control in diesel engines. A one dimensional, single channel selective catalytic reduction (SCR) model was previously developed using Oak Ridge National Laboratory (ORNL) generated reactor data for an iron-zeolite catalyst system. Calibration of this model to fit the experimental reactor data collected at ORNL for a copper-zeolite SCR catalyst is presented. Initially a test protocol was developed in order to investigate the different phenomena responsible for the SCR system response. A SCR model with two distinct types of storage sites was used. The calibration process was started with storage capacity calculations for the catalyst sample. Then the chemical kinetics occurring at each segment of the protocol was investigated. The reactions included in this model were adsorption, desorption, standard SCR, fast SCR, slow SCR, NH3 Oxidation, NO oxidation and N2O formation. The reaction rates were identified for each temperature using a time domain optimization approach. Assuming an Arrhenius form of the reaction rates, activation energies and pre-exponential parameters were fit to the reaction rates. The results indicate that the Arrhenius form is appropriate and the reaction scheme used allows the model to fit to the experimental data and also for use in real world engine studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimating un-measurable states is an important component for onboard diagnostics (OBD) and control strategy development in diesel exhaust aftertreatment systems. This research focuses on the development of an Extended Kalman Filter (EKF) based state estimator for two of the main components in a diesel engine aftertreatment system: the Diesel Oxidation Catalyst (DOC) and the Selective Catalytic Reduction (SCR) catalyst. One of the key areas of interest is the performance of these estimators when the catalyzed particulate filter (CPF) is being actively regenerated. In this study, model reduction techniques were developed and used to develop reduced order models from the 1D models used to simulate the DOC and SCR. As a result of order reduction, the number of states in the estimator is reduced from 12 to 1 per element for the DOC and 12 to 2 per element for the SCR. The reduced order models were simulated on the experimental data and compared to the high fidelity model and the experimental data. The results show that the effect of eliminating the heat transfer and mass transfer coefficients are not significant on the performance of the reduced order models. This is shown by an insignificant change in the kinetic parameters between the reduced order and 1D model for simulating the experimental data. An EKF based estimator to estimate the internal states of the DOC and SCR was developed. The DOC and SCR estimators were simulated on the experimental data to show that the estimator provides improved estimation of states compared to a reduced order model. The results showed that using the temperature measurement at the DOC outlet improved the estimates of the CO , NO , NO2 and HC concentrations from the DOC. The SCR estimator was used to evaluate the effect of NH3 and NOX sensors on state estimation quality. Three sensor combinations of NOX sensor only, NH3 sensor only and both NOX and NH3 sensors were evaluated. The NOX only configuration had the worst performance, the NH3 sensor only configuration was in the middle and both the NOX and NH3 sensor combination provided the best performance.