1 resultado para dynamic factor models
em Digital Commons - Michigan Tech
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ANIMAL PRODUCTION JOURNAL (1)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (17)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (3)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (39)
- CentAUR: Central Archive University of Reading - UK (73)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (31)
- Cochin University of Science & Technology (CUSAT), India (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (10)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (19)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (16)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (61)
- Instituto Politécnico do Porto, Portugal (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (80)
- Queensland University of Technology - ePrints Archive (123)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (34)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (75)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (14)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (17)
- Universidad Politécnica de Madrid (23)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (6)
- Université de Montréal (2)
- Université de Montréal, Canada (32)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (10)
- University of Washington (1)
- WestminsterResearch - UK (7)
Resumo:
In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.