3 resultados para double perovskite spin polarization point contact spectrocopy

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ab-initio Hartree Fock (HF), density functional theory (DFT) and hybrid potentials were employed to compute the optimized lattice parameters and elastic properties of perovskite 3-d transition metal oxides. The optimized lattice parameters and elastic properties are interdependent in these materials. An interaction is observed between the electronic charge, spin and lattice degrees of freedom in 3-d transition metal oxides. The coupling between the electronic charge, spin and lattice structures originates due to localization of d-atomic orbitals. The coupling between the electronic charge, spin and crystalline lattice also contributes in the ferroelectric and ferromagnetic properties in perovskites. The cubic and tetragonal crystalline structures of perovskite transition metal oxides of ABO3 are studied. The electronic structure and the physics of 3-d perovskite materials is complex and less well considered. Moreover, the novelty of the electronic structure and properties of these perovskites transition metal oxides exceeds the challenge offered by their complex crystalline structures. To achieve the objective of understanding the structure and property relationship of these materials the first-principle computational method is employed. CRYSTAL09 code is employed for computing crystalline structure, elastic, ferromagnetic and other electronic properties. Second-order elastic constants (SOEC) and bulk moduli (B) are computed in an automated process by employing ELASTCON (elastic constants) and EOS (equation of state) programs in CRYSTAL09 code. ELASTCON, EOS and other computational algorithms are utilized to determine the elastic properties of tetragonal BaTiO3, rutile TiO2, cubic and tetragonal BaFeO3 and the ferromagentic properties of 3-d transition metal oxides. Multiple methods are employed to crosscheck the consistency of our computational results. Computational results have motivated us to explore the ferromagnetic properties of 3-d transition metal oxides. Billyscript and CRYSTAL09 code are employed to compute the optimized geometry of the cubic and tetragonal crystalline structure of transition metal oxides of Sc to Cu. Cubic crystalline structure is initially chosen to determine the effect of lattice strains on ferromagnetism due to the spin angular momentum of an electron. The 3-d transition metals and their oxides are challenging as the basis functions and potentials are not fully developed to address the complex physics of the transition metals. Moreover, perovskite crystalline structures are extremely challenging with respect to the quality of computations as the latter requires the well established methods. Ferroelectric and ferromagnetic properties of bulk, surfaces and interfaces are explored by employing CRYSTAL09 code. In our computations done on cubic TMOs of Sc-Fe it is observed that there is a coupling between the crystalline structure and FM/AFM spin polarization. Strained crystalline structures of 3-d transition metal oxides are subjected to changes in the electromagnetic and electronic properties. The electronic structure and properties of bulk, composites, surfaces of 3-d transition metal oxides are computed successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently nanoscale junctions consisting of 0-D nanostructures (single molecule) or 1-D nanostructures (semiconducting nanowire) sandwiched between two metal electrodes are successfully fabricated and characterized. What lacks in the recent developments is the understanding of the mechanism behind the observed phenomena at the level of atoms and electrons. For example, the origin of observed switching effect in a semiconducting nanowire due to the influence of an external gate bias is not yet understood at the electronic structure level. On the same context, different experimental groups have reported different signs in tunneling magneto-resistance for the same organic spin valve structure, which has baffled researchers working in this field. In this thesis, we present the answers to some of these subtle questions by investigating the charge and spin transport in different nanoscale junctions. A parameter-free, single particle Green’s function approach in conjunction with a posteriori density functional theory (DFT) involving a hybrid orbital dependent functional is used to calculate the tunneling current in the coherent transport limit. The effect of spin polarization is explicitly incorporated to investigate spin transport in a nanoscale junction. Through the electron transport studies in PbS nanowire junction, a new orbital controlled mechanism behind the switching of the current is proposed. It can explain the switching behavior, not only in PbS nanowire, but in other lead-chalcogenide nanowires as well. Beside this, the electronic structure properties of this nanowire are studied using periodic DFT. The quantum confinement effect was investigated by calculating the bandgap of PbS nanowires with different diameters. Subsequently, we explain an observed semiconducting to metallic phase transition of this nanowire by calculating the bandgap of the nanowire under uniform radial strain. The compressive radial strain on the nanowire was found to be responsible for the metallic to semiconducting phase transition. Apart from studying one dimensional nanostructure, we also present transport properties in zero dimensional single molecular junctions. We proposed a new codoping approach in a single molecular carborane junction, where a cation and an anion are simultaneously doped to find the role of a single atom in the device. The main purpose was to build a molecular junction where a single atom can dictate the flow of electrons in a circuit. Recent observations of both positive and negative sign in tunneling magnetoresistance (TMR) the using same organic spin-valve structure hasmystified researchers. From our spin dependent transport studies in a prototypical organic molecular tunneling device, we found that a 3% change in metal-molecule interfacial distance can alter the sign of TMR. Changing the interfacial distance by 3%, the number of participating eigenstates as well as their orbital characteristic changes for anti-parallel configuration of the magnetization at the two electrodes, leading to the sign reversal of the TMR. Apart from this, the magnetic proximity effect under applied bias is investigated quantitatively, which can be used to understand the observed unexpectedmagnetismin carbon basedmaterials when they are in close proximity with magnetic substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While nucleation of solids in supercooled liquids is ubiquitous [15, 65, 66], surface crystallization, the tendency for freezing to begin preferentially at the liquid-gas interface, has remained puzzling [74, 18, 68, 69, 51, 64, 72, 16]. Here we employ high-speed imaging of supercooled water drops to study the phenomenon of heterogeneous surface crystallization. Our geometry avoids the "point-like contact" of prior experiments by providing a simple, symmetric contact line (triple line defined by the substrate-liquid-air interface) for a drop resting on a homogeneous silicon substrate. We examine three possible mechanisms that might explain these laboratory observations: (i) Line Tension at the triple line, (ii) Thermal Gradients within the droplets and (iii) Surface Texture. In our first study we record nearly perfect spatial uniformity in the immersed (liquid-substrate) region and, thereby, no preference for nucleation at the triple line. In our second study, no influence of thermal gradients on the preference for freezing at the triple line was observed. Motivated by the conjectured importance of line tension (τ) [1, 66] for heterogeneous nucleation, we also searched for evidence of a transition to surface crystallization at length scales on the order of δ ∼ τ/σ, where σ is the surface tension [14]; poorly constrained τ [49] leads to δ ranging from microns to nanometers. We demonstrate that nano-scale texture causes a shift in the nucleation to the three-phase contact line, while micro-scale texture does not. The possibility of a critical length scale has implications for the effectiveness of nucleation catalysts, including formation of ice in atmospheric clouds [7].