3 resultados para domestic water heater
em Digital Commons - Michigan Tech
Resumo:
Rainwater harvesting (RWH) has a long history and has been supported as an appropriate technology and relatively cheap source of domestic water supply. This study compares the suitability of RWH and piped water systems in three rural Dominican communities seeking to improve their water systems. Ethnographic methods considering the views of residents and feasibility and cost analysis of the options were used to conclude that RWH is not a feasible or cost-effective solution for domestic water needs of all households in the communities studied. RWH investment is best left to individual households that can implement informal RWH with incremental increases in storage volume. Piped water distribution (PWD) systems perceived as too large or expensive to implement have much lower capital costs and are more supported by residents as a solution because they provide large quantities of water needed to maintain water services beyond mere survival levels.
Resumo:
Peru is a developing country with abundant fresh water resources, yet the lack of infrastructure leaves much of the population without access to safe water for domestic uses. The author of this report was a Peace Corps Volunteer in the sector of water & sanitation in the district of Independencia, Ica, Peru. Independencia is located in the arid coastal region of the country, receiving on average 15 mm of rain annually. The water source for this district comes from the Pisco River, originating in the Andean highlands and outflowing into the Pacific Ocean near the town of Pisco, Peru. The objectives of this report are to assess the water supply and sanitation practices, model the existing water distribution system, and make recommendations for future expansion of the distribution system in the district of Independencia, Peru. The assessment of water supply will be based on the results from community surveys done in the district of Independencia, water quality testing done by a detachment of the U.S. Navy, as well as on the results of a hydraulic model built in EPANET 2.0 to represent the distribution system. Sanitation practice assessments will be based on the surveys as well as observations from the author while living in Peru. Recommendations for system expansions will be made based on results from the EPANET model and the municipality’s technical report for the existing distribution system. Household water use and sanitation surveys were conducted with 84 families in the district revealing that upwards of 85% store their domestic water in regularly washed containers with lids. Over 80% of those surveyed are drinking water that is treated, mostly boiled. Of those surveyed, over 95% reported washing their hands and over 60% mentioned at least one critical time for hand washing when asked for specific instances. From the surveys, it was also discovered that over 80% of houses are properly disposing of excrement, in either latrines or septic tanks. There were 43 families interviewed with children five years of age or under, and just over 18% reported the child had a case of diarrhea within the last month at the time of the interview. Finally, from the surveys it was calculated that the average water use per person per day is about 22 liters. Water quality testing carried out by a detachment of the U.S. Navy revealed that the water intended for consumption in the houses surveyed was not suitable for consumption, with a median E. coli most probable number of 47/100 ml for the 61 houses sampled. The median total coliforms was 3,000 colony forming units per 100 ml. EPANET was used to simulate the water delivery system and evaluate its performance. EPANET is designed for continuous water delivery systems, assuming all pipes are always flowing full. To account for the intermittent nature of the system, multiple EPANET network models were created to simulate how water is routed to the different parts of the system throughout the day. The models were created from interviews with the water technicians and a map of the system created using handheld GPS units. The purpose is to analyze the performance of the water system that services approximately 13,276 people in the district of Independencia, Peru, as well as provide recommendations for future growth and improvement of the service level. Performance evaluation of the existing system is based on meeting 25 liters per person per day while maintaining positive pressure at all nodes in the network. The future performance is based on meeting a minimum pressure of 20 psi in the main line, as proposed by Chase (2000). The EPANET model results yield an average nodal pressure for all communities of 71 psi, with a range from 1.3 – 160 psi. Thus, if the current water delivery schedule obtained from the local municipality is followed, all communities should have sufficient pressure to deliver 25 l/p/d, with the exception of Los Rosales, which can only supply 3.25 l/p/d. However, if the line to Los Rosales were increased from one to four inches, the system could supply this community with 25 l/p/d. The district of Independencia could greatly benefit from increasing the service level to 24-hour water delivery and a minimum of 50 l/p/d, so that communities without reliable access due to insufficient pressure would become equal beneficiaries of this invaluable resource. To evaluate the feasibility of this, EPANET was used to model the system with a range of population growth rates, system lifetimes, and demands. In order to meet a minimum pressure of 20 psi in the main line, the 6-inch diameter main line must be increased and approximately two miles of trench must be excavated up to 30 feet deep. The sections of the main line that must be excavated are mile 0-1 and 1.5-2.5, and the first 3.4 miles of the main line must be increased from 6 to 16 inches, contracting to 10 inches for the remaining 5.8 miles. Doing this would allow 24-hour water delivery and provide 50 l/p/d for a range of population growth rates and system lifetimes. It is expected that improving the water delivery service would reduce the morbidity and mortality from diarrheal diseases by decreasing the recontamination of the water due to transport and household storage, as well as by maintaining continuous pressure in the system to prevent infiltration of contaminated groundwater. However, this expansion must be carefully planned so as not to affect aquatic ecosystems or other districts utilizing water from the Pisco River. It is recommended that stream gaging of the Pisco River and precipitation monitoring of the surrounding watershed is initiated in order to begin a hydrological study that would be integrated into the district’s water resource planning. It is also recommended that the district begin routine water quality testing, with the results available to the public.
Resumo:
This dissertation addresses sustainability of rapid provision of safe water and sanitation required to meet the Millennium Development Goals. Review of health-related literature and global statistics demonstrates engineers' role in achieving the MDGs. This review is followed by analyses relating to social, environmental, and health aspects of meeting MDG targets. Analysis of national indicators showed that inadequate investment, poor or nonexistent policies and governance are challenges to global sanitation coverage in addition to lack of financial resources and gender disparity. Although water availability was not found to be a challenge globally, geospatial analysis demonstrated that water availability is a potentially significant barrier for up to 46 million people living in urban areas and relying on already degraded water resources for environmental income. A daily water balance model incorporating the National Resources Conservation Services curve number method in Bolivian watersheds showed that local water stress is linked to climate change because of reduced recharge. Agricultural expansion in the region slightly exacerbates recharge reductions. Although runoff changes will range from -17% to 14%, recharge rates will decrease under all climate scenarios evaluated (-14% to -27%). Increasing sewer coverage may place stress on the readily accessible natural springs, but increased demand can be sustained if other sources of water supply are developed. This analysis provides a method for hydrological analysis in data scarce regions. Data required for the model were either obtained from publicly available data products or by conducting field work using low-cost methods feasible for local participants. Lastly, a methodology was developed to evaluate public health impacts of increased household water access resulting from domestic rainwater harvesting, incorporating knowledge of water requirements of sanitation and hygiene technologies. In 37 West African cities, domestic rainwater harvesting has the potential to reduce diarrheal disease burden by 9%, if implemented alone with 400 L storage. If implemented in conjunction with point of use treatment, this reduction could increase to 16%. The methodology will contribute to cost-effectiveness evaluations of interventions as well as evaluations of potential disease burden resulting from reduced water supply, such as reductions observed in the Bolivian communities.