5 resultados para direct non-healthcare cost

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-intrusive interferometric measurement technique has been successfully developed to measure fluid compressibility in both gas and liquid phases via refractive index (RI) changes. The technique, consisting of an unfocused laser beam impinging a glass channel, can be used to separate and quantify cell deflection, fluid flow rates, and pressure variations in microchannels. Currently in fields such as microfluidics, pressure and flow rate measurement devices are orders of magnitude larger than the channel cross-sections making direct pressure and fluid flow rate measurements impossible. Due to the non-intrusive nature of this technique, such measurements are now possible, opening the door for a myriad of new scientific research and experimentation. This technique, adapted from the concept of Micro Interferometric Backscatter Detection (MIBD), boasts the ability to provide comparable sensitivities in a variety of channel types and provides quantification capability not previously demonstrated in backscatter detection techniques. Measurement sensitivity depends heavily on experimental parameters such as beam impingement angle, fluid volume, photodetector sensitivity, and a channel’s dimensional tolerances. The current apparatus readily quantifies fluid RI changes of 10-5 refractive index units (RIU) corresponding to pressures of approximately 14 psi and 1 psi in water and air, respectively. MIBD reports detection capability as low as 10-9 RIU and the newly adapted technique has the potential to meet and exceed this limit providing quantification in the place of detection. Specific device sensitivities are discussed and suggestions are provided on how the technique may be refined to provide optimal quantification capabilities based on experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a need by engine manufactures for computationally efficient and accurate predictive combustion modeling tools for integration in engine simulation software for the assessment of combustion system hardware designs and early development of engine calibrations. This thesis discusses the process for the development and validation of a combustion modeling tool for Gasoline Direct Injected Spark Ignited Engine with variable valve timing, lift and duration valvetrain hardware from experimental data. Data was correlated and regressed from accepted methods for calculating the turbulent flow and flame propagation characteristics for an internal combustion engine. A non-linear regression modeling method was utilized to develop a combustion model to determine the fuel mass burn rate at multiple points during the combustion process. The computational fluid dynamic software Converge ©, was used to simulate and correlate the 3-D combustion system, port and piston geometry to the turbulent flow development within the cylinder to properly predict the experimental data turbulent flow parameters through the intake, compression and expansion processes. The engine simulation software GT-Power © is then used to determine the 1-D flow characteristics of the engine hardware being tested to correlate the regressed combustion modeling tool to experimental data to determine accuracy. The results of the combustion modeling tool show accurate trends capturing the combustion sensitivities to turbulent flow, thermodynamic and internal residual effects with changes in intake and exhaust valve timing, lift and duration.