2 resultados para dielectric materials

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy crisis and worldwide environmental problem make hydrogen a prospective energy carrier. However, storage and transportation of hydrogen in large quantities at small volume is currently not practical. Lots of materials and devices have been developed for storage hydrogen, but to today none is able to meet the DOE targets. Activated carbon has been found to be a good hydrogen adsorbent due to its high surface area. However, the weak van der Waals force between hydrogen and the adsorbent has limited the adsorption capacity. Previous studies have found that enhanced adsorption can be obtained with applied electric field. Stronger interaction between the polarized hydrogen and the charged sorbents under high voltage is considered as the reason. This study was initiated to investigate if the adsorption can be further enhanced when the activated carbon particles are separated with a dielectric coating. Dielectric TiO2 nanoparticles were first utilized. Hydrogen adsorption measurements on the TiO2-coated carbon materials, with or without an external electric field, were made. The results showed that the adsorption capacity enhancement increased with the increasing amount of TiO2 nanoparticles with an applied electric field. Since the hydrogen adsorption capacity on TiO2 particles is very low and there is no hydrogen adsorption enhancement on TiO2 particles alone when electric field is applied, the effect of dielectric coating is demonstrated. Another set of experiments investigated the behavior of hydrogen adsorption over TiO2-coated activated carbon under various electric potentials. The results revealed that the hydrogen adsorption first increased and then decreased with the increase of electric field. The improved storage was due to a stronger interaction between charged carbon surface and polarized hydrogen molecule caused by field induced polarization of TiO2 coating. When the electric field was sufficient to cause considerable ionization of hydrogen, the decrease of hydrogen adsorption occurred. The current leak detected at 3000 V was a sign of ionization of hydrogen. Experiments were also carried out to examine the hydrogen adsorption performances over activated carbon separated by other dielectric materials, MgO, ZnO and BaTiO3, respectively. For the samples partitioned with MgO and ZnO, the measurements with and without an electric field indicated negligible differences. Electric field enhanced adsorption has been observed on the activated carbon separated with BaTiO3, a material with unusually high dielectric constant. Corresponding computational calculations using Density Functional Theory have been performed on hydrogen interaction with charged TiO2 molecule as well as TiO2 molecule, coronene and TiO2-doped coronene in the presence of an electric field. The simulated results were consistent with the observations from experiments, further confirming the proposed hypotheses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (εr>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.