2 resultados para delay-line position sensitive detector

em Digital Commons - Michigan Tech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Satellite measurement validations, climate models, atmospheric radiative transfer models and cloud models, all depend on accurate measurements of cloud particle size distributions, number densities, spatial distributions, and other parameters relevant to cloud microphysical processes. And many airborne instruments designed to measure size distributions and concentrations of cloud particles have large uncertainties in measuring number densities and size distributions of small ice crystals. HOLODEC (Holographic Detector for Clouds) is a new instrument that does not have many of these uncertainties and makes possible measurements that other probes have never made. The advantages of HOLODEC are inherent to the holographic method. In this dissertation, I describe HOLODEC, its in-situ measurements of cloud particles, and the results of its test flights. I present a hologram reconstruction algorithm that has a sample spacing that does not vary with reconstruction distance. This reconstruction algorithm accurately reconstructs the field to all distances inside a typical holographic measurement volume as proven by comparison with analytical solutions to the Huygens-Fresnel diffraction integral. It is fast to compute, and has diffraction limited resolution. Further, described herein is an algorithm that can find the position along the optical axis of small particles as well as large complex-shaped particles. I explain an implementation of these algorithms that is an efficient, robust, automated program that allows us to process holograms on a computer cluster in a reasonable time. I show size distributions and number densities of cloud particles, and show that they are within the uncertainty of independent measurements made with another measurement method. The feasibility of another cloud particle instrument that has advantages over new standard instruments is proven. These advantages include a unique ability to detect shattered particles using three-dimensional positions, and a sample volume size that does not vary with particle size or airspeed. It also is able to yield two-dimensional particle profiles using the same measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.