3 resultados para debris flows
em Digital Commons - Michigan Tech
Resumo:
Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.
Resumo:
The Mount Meager Volcanic Complex (MMVC) in south-western British Columbia is a potentially active, hydrothermally altered massif comprising a series of steep, glaciated peaks. Climatic conditions and glacial retreat has led to the further weathering, exposure and de-buttressing of steep slopes composed of weak, unconsolidated material. This has resulted in an increased frequency of landslide events over the past few decades, many of which have dammed the rivers bordering the Complex. The breach of these debris dams presents a risk of flooding to the downstream communities. Preliminary mapping showed there are numerous sites around the Complex where future failure could occur. Some of these areas are currently undergoing progressive slope movement and display features to support this such as anti-scarps and tension cracks. The effect of water infiltration on stability was modelled using the Rocscience program Slide 6.0. The main site of focus was Mount Meager in the south- east of the Complex where the most recent landslide took place. Two profiles through Mount Meager were analysed along with one other location in the northern section of the MMVC, where instability had been detected. The lowest Factor of Safety (FOS) for each profile was displayed and an estimate of the volume which could be generated was deduced. A hazard map showing the inundation zones for various volumes of debris flows was created from simulations using LAHARZ. Results showed the massif is unstable, even before infiltration. Varying the amount of infiltration appears to have no significant impact on the FOS annually implying that small changes of any kind could also trigger failure. Further modelling could be done to assess the impact of infiltration over shorter time scales. The Slide models show the volume of material that could be delivered to the Lillooet River Valley to be of the order of 109 m3 which, based on the LAHARZ simulations, would completely inundate the valley and communities downstream. A major hazard of this is that the removal of such a large amount of material has the potential to trigger an explosive eruption of the geothermal system and renew volcanic activity. Although events of this size are infrequent, there is a significant risk to the communities downstream of the complex.
Resumo:
Geologic hazards affect the lives of millions of people worldwide every year. El Salvador is a country that is regularly affected by natural disasters, including earthquakes, volcanic eruptions and tropical storms. Additionally, rainfall-induced landslides and debris flows are a major threat to the livelihood of thousands. The San Vicente Volcano in central El Salvador has a recurring and destructive pattern of landslides and debris flows occurring on the northern slopes of the volcano. In recent memory there have been at least seven major destructive debris flows on San Vicente volcano. Despite this problem, there has been no known attempt to study the inherent stability of these volcanic slopes and to determine the thresholds of rainfall that might lead to slope instability. This thesis explores this issue and outlines a suggested method for predicting the likelihood of slope instability during intense rainfall events. The material properties obtained from a field campaign and laboratory testing were used for a 2-D slope stability analysis on a recent landslide on San Vicente volcano. This analysis confirmed that the surface materials of the volcano are highly permeable and have very low shear strength and provided insight into the groundwater table behavior during a rainstorm. The biggest factors on the stability of the slopes were found to be slope geometry, rainfall totals and initial groundwater table location. Using the results from this analysis a stability chart was created that took into account these main factors and provided an estimate of the stability of a slope in various rainfall scenarios. This chart could be used by local authorities in the event of a known extreme rainfall event to help make decisions regarding possible evacuation. Recommendations are given to improve the methodology for future application in other areas as well as in central El Salvador.