2 resultados para current levels of literacy
em Digital Commons - Michigan Tech
Resumo:
I assessed the influence of the Keweenaw Current and spring thermal bar on the distribution of larval fishes and large zooplankton in Lake Superior. In 1998 and 1999, samples were collected from inshore (0.2 – 3.0 km from shore) and offshore (5.0 – 9.0 km from shore) locations on three transects off the western coast of the Keweenaw Peninsula, Michigan. For larval fishes, density and size distribution patterns of lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsoni), and spoonhead sculpin (Cottus ricei) suggest a seasonal inshore to offshore movement. For zooplankton, seasonal warming appeared to be the major factor that limited planktonic catches of the primarily benthic Mysisrelicta and Diporeia spp., while simultaneously stimulated growth and reproduction of the cladocerans Daphnia spp., Holopedium gibberum, and Bythotrephes cederstroemi. In contrast, calanoid copepods as a group were abundant throughout the entire sampling season. The greatest abundances of zooplankton were generally encountered offshore, even for the cladocerans, which apparently expanded from inshore to offshore locations with seasonal warming. In 2000, sampling efforts focused on lake herring. Samples were collected from surface waters at 0.1 – 17.0 km from shore on two transects. Lake herring larvae were also reared in the laboratory from eggs in order to validate the use of otolith microstructure for aging. Increment deposition was not statistically different from a daily rate starting from 28 days after hatching, near the time of yolk-sac absorption, but larvae with lower growth rates could not be aged as accurately. In Lake Superior, lake herring tended to be slightly more abundant, larger, and older at inshore locations, but a dense patch of younger larvae was also encountered 7 – 13 km from shore. The distribution iiipatterns suggest that larvae were transported by prevailing currents into the study region, possibly from the more productive spawning regions in western Lake Superior. Growth rates were suppressed at offshore locations where temperatures were less than 8°C. These results indicate that lake herring larvae may be transported far distances from spawning concentrations by longshore currents, and water temperatures may largely control their growth.
Resumo:
Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.