8 resultados para costs of production
em Digital Commons - Michigan Tech
Resumo:
This dissertation is a report on a collaborative project between the Computer Science and the Humanities Departments to develop case studies that focus on issues of communication in the workplace, and the results of their use in the classroom. My argument is that case study teaching simulates real-world experience in a meaningful way, essentially developing a teachable way of developing phronesis, the reasoned capacity to act for the good in public. In addition, it can be read as a "how-to" guide for educators who may wish to construct their own case studies. To that end, I have included a discussion of the ethnographic methodologies employed, and how it was adapted to our more pragmatic ends. Finally, I present my overarching argument for a new appraisal of the concept of techné. This reappraisal emphasizes its productive activity, poiesis, rather than focusing on its knowledge as has been the case in the past. I propose that focusing on the telos, the end outside the production, contributes to the diminishment, if not complete foreclosure, of a rich concept of techné.
Resumo:
Although natural gas has been praised as a clean and abundant energy source, the varying impacts and uncertainties surrounding the process of extracting natural gas from unconventional sources, known as horizontal high-volume hydraulic fracturing (HVHF) or “fracking,” have raised important concerns. The practice of HVHF is expanding so quickly that the full impacts are not yet known. This thesis project, using a grounded theory methodological approach, explores the risks and benefits associated with HVHF as recognized by the residents of two Michigan counties, one that currently produces natural gas by HVHF (Crawford County) and one that does not (Barry County). Through an analysis of media content related to HVHF in each case study site and interviews with stakeholders in both counties, this study examines perceptions of risks and benefits by comparing two communities that differ in their level of experience with HVHF operations, contributing to our understanding of how perceptions of risks and benefits are shaped by natural gas development. The comparative analysis of the case study counties revealed similarities and differences between the case study counties. Overall, Barry County residents identified fewer benefits and more risks, and had stronger negative perceptions than Crawford County residents. This study contributes to the social science literature by developing a richer theoretical frame for understanding perceptions of HVHF and also shares recommendations for industry, organizations, regulators, and government leaders interested in effectively communicating with community stakeholders about the benefits and risks of HVHF.
Resumo:
This research is a study of the use of capital budgeting methods for investment decisions. It uses both the traditional methods and the newly introduced approach called the real options analysis to make a decision. The research elucidates how capital budgeting can be done when analysts encounter projects with high uncertainty and are capital intensive, for example oil and gas production. It then uses the oil and gas find in Ghana as a case study to support its argument. For a clear understanding a thorough literature review was done, which highlights the advantages and disadvantages of both methods. The revenue that the project will generate and the costs of production were obtained from the predictions by analysts from GNPC and compared to others experts’ opinion. It then applied both the traditional and real option valuation on the oil and gas find in Ghana to determine the project’s feasibility. Although, there are some short falls in real option analysis that are presented in this research, it is still helpful in valuing projects that are capital intensive with high volatility due to the strategic flexibility management possess in their decision making. It also suggests that traditional methods of evaluation should still be maintained and be used to value projects that have no options or those with options yet the options do not have significant impact on the project. The research points out the economic ripples the production of oil and gas will have on Ghana’s economy should the project be undertaken. These ripples include economic growth, massive job creation and reduction of the balance of trade deficit for the country. The long run effect is an eventually improvement of life of the citizens. It is also belief that the production of gas specifically can be used to generate electricity in Ghana which would enable the country to have a more stable and reliable power source necessary to attract more foreign direct investment.
Resumo:
The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest and most important deposits is the Marcellus Shale. Hydraulic fracturing and horizontal drilling have allowed for the technical feasibility of production, but concerns exist regarding the economics of shale gas production. These concerns are related to limited production and economic data for shale gas wells, declines in the rates of production, falling natural gas prices, oversupply issues coupled with slow growth in U.S. natural gas demand, and rising production costs. An attempt to determine profitability was done through the economic analysis of an average shale gas well using data that is representative of natural gas production from 2009 to 2011 in the Marcellus Shale. Despite the adverse conditions facing the shale gas industry it is concluded from the results of this analysis that a shale gas well in the Marcellus Shale is profitable based on NPV, IRR and breakeven price calculations.
Resumo:
The production by biosynthesis of optically active amino acids and amines satisfies the pharmaceutical industry in its demand for chiral building blocks for the synthesis of various pharmaceuticals. Among several enzymatic methods that allow the synthesis of optically active aminoacids and amines, the use of minotransferase is a promising one due to its broad substrate specificity and no requirement for external cofactor regeneration. The synthesis of chiral compounds by aminotransferases can be done either by asymmetric synthesis starting from keto acids or ketones, and by kinetic resolution starting from racemic aminoacids or amines. The asymmetric synthesis of substituted (S)-aminotetralin, an active pharmaceutical ingredient (API), has shown to have two major factors that contribute to increasing the cost of production. These factors are the raw material cost of biocatalyst used to produce it and product loss during biocatalyst separation. To minimize the cost contribution of biocatalyst and to minimize the loss of product, two routes have been chosen in this research: 1. To engineer the aminotransferase biocatalyst to have greater specific activity, and 2. Improve the engineering of the process by immobilization of biocatalyst in calcium alginate and addition of cosolvents. An (S)-aminotransferase (Mutant CNB03-03) was immobilized, not as purified enzyme but as enzyme within spray dried cells, in calcium alginate beads and used to produce substituted (S)-aminotetralin at 50 °C and pH 7 in experiments where the immobilized biocatalyst was recycled. Initial rate of reaction for cycle 1 (6 hr duration) was determined to be 0.258 mM/min, for cycle 2 (20 hr duration) it decreased by ~50% compared to cycle 1, and for cycle 3 (20 hr duration) it decreased by ~90% compared to cycle 1 (immobilized preparation consisted of 50 mg of spray dried cells per gram of calcium alginate). Conversion to product for each cycle decreased as well, from 100% in cycle 1 (About 50 mM), 80% in cycle 2, and 30% after cycle 3. This mutant was determined to be deactivated at elevated temperatures during the reaction cycle and was not stable enough to allow multiple cycles in its immobilized form. A new mutant aminotransferase was isolated by applying error-prone polymerase chain reaction (PCR) on the gene coding for this enzyme and screening/selection: CNB04-01. This mutant showed a significant improvement in thermostability in comparison to CNB03-03. The new mutant was immobilized and tested under similar reaction conditions. Initial rate remained fairly constant (0.2 mM/min) over four cycles (each cycle with a duration of about 20 hours) with the mutant retaining almost 80% of initial rate in the fourth cycle. The final product concentrations after each cycle did not decrease during recycle experiments. Thermostability of CNB04-01 was much improved compared to CNB03-03. Under the same reaction conditions as stated above, the addition of co-solvents was studied in order to increase substituted tetralone solubility. Toluene and sodium dodecylsulfate (SDS) were used. SDS at 0.01% (w/v) allowed four recycles of the immobilized spray dried cells of CNB04-01, always reaching higher product concentration (80-85 mM) than the system with toluene at 3% (v/v) -70 mM-. The long term activity of immobilized CNB04-01 in a system with SDS 0.01% (w/v) at 50 °C, pH 7 was retained for three cycles (20 to 24 hours each one), reaching always final product concentration between 80-85 mM, but dropping precipitously in the fourth cycle to a final product concentration of 50 mM. Although significant improvement of immobilization on productivity and stability were observed using CNB04-01, another observation demonstrated the limitations of an immobilization strategy on reducing process costs. After analyzing the results of this experiment it was seen that a sudden drop occurred on final product concentration after the third recycle. This was due to product accumulation inside the immobilized preparation. In order to improve the economics of the process, research was focused on developing a free enzyme with an even higher activity, thus reducing raw material cost as well as improving biomass separation. A new enzyme was obtained (CNB05-01) using error-prone PCR and screening using as a template the gene derived from the previous improved enzyme. This mutant was determined to have 1.6 times the initial rate of CNB04-01 and had a higher temperature optimum (55°). This new enzyme would allow reducing enzyme loading in the reaction by five-fold compared to CNB03-03, when using it at concentration of one gram of spray dried cells per liter (completing the reaction after 20-24 hours). Also this mutant would allow reducing process time to 7-8 hours when used at a concentration of 5 grams of spray dried cells per liter compared to 24 hours for CNB03-03, assuming that the observations shown before are scalable. It could be possible to improve the economics of the process by either reducing enzyme concentration or reducing process time, since the production cost of the desired product is primarily a function of both enzyme concentration and process time.
Resumo:
This thesis attempts to find the least-cost strategy to reduce CO2 emission by replacing coal by other energy sources for electricity generation in the context of the proposed EPA’s regulation on CO2 emissions from existing coal-fired power plants. An ARIMA model is built to forecast coal consumption for electricity generation and its CO2 emissions in Michigan from 2016 to 2020. CO2 emission reduction costs are calculated under three emission reduction scenarios- reduction to 17%, 30% and 50% below the 2005 emission level. The impacts of Production Tax Credit (PTC) and the intermittency of renewable energy are also discussed. The results indicate that in most cases natural gas will be the best alternative to coal for electricity generation to realize CO2 reduction goals; if the PTC for wind power will continue after 2015, a natural gas and wind combination approach could be the best strategy based on the least-cost criterion.
Resumo:
Increases in oil prices after the economic recession have been surprising for domestic oil production in the United States since the beginning of 2009. Not only did the conventional oil extraction increase, but unconventional oil production and exploration also improved greatly with the favorable economic conditions. This favorable economy encourages companies to invest in new reservoirs and technological developments. Recently, enhanced drilling techniques including hydraulic fracturing and horizontal drilling have been supporting the domestic economy by way of unconventional shale and tight oil from various U.S. locations. One of the main contributors to this oil boom is the unconventional oil production from the North Dakota Bakken field. Horizontal drilling has increased oil production in the Bakken field, but the economic issues of unconventional oil extraction are still debatable due to volatile oil prices, high decline rates of production, a limited production period, high production costs, and lack of transportation. The economic profitability and viability of the unconventional oil play in the North Dakota Bakken was tested with an economic analysis of average Bakken unconventional well features. Scenario analysis demonstrated that a typical North Dakota Bakken unconventional oil well is profitable and viable as shown by three financial metrics; net present value, internal rate of return, and break-even prices.
Resumo:
This research is about producing recombinant Trichoderma reesei endoglucanase Cel7B by using Kluyveromyces lactis, transformed with chromosomally integrated Cel7B cDNA, as a host cell (K. lactis Cel7B). Cel7B is one of the glycoside hydrolyze family of proteins that are produced by T. reesei. Cel7B together with other endoglucanases, exoglucanases, and â-glucosidases hydrolyze cellulose to glucose, which can then be fermented to biofuels or other value-added products. The research objective of this MS project is to examine favorable fermentation conditions for recombinant Cel7B enzyme production and improved activity. Production of enzyme on different types of media was examined, and the activity of the enzyme was measured by using different tools or procedures. The first condition tested for was using different concentrations of galactose as a carbon and energy source; however galactose also acts as a potent promoter of recombinant Cel7B expression in K. lactis Cel7B. The purpose of this method is to determine the relationship between production of enzyme with increasing sugar concentration. The second culture condition test was using different types of media: a complex medium-yeast extract, peptone, galactose (YPGal); a minimal medium-yeast nitrogen base (YNB) with galactose; and a minimal medium with supplement-yeast nitrogen base with casamino acid (YBC), a nitrogen source, with galactose. The third condition was using different types of reactors or fermenters: a small reactor (shake flask) and a larger automated bioreactor (BioFlo 3000 fermenter). The purpose of this method is to determine the quantity of the protein produced by using different environments of production. Different tools to determine the presence and activity of Cel7B enzyme were used. For the presence of enzyme, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used. Secondly, to detect enzyme activity, the carboxymethyl cellulose- 3,5-dinitrosalicylic acid (CMC- DNS) assay was employed. SDS-PAGE showed that the enzyme band was at 67 kDa, which is larger than native Cel7B (52 kDa.), likely due to over glycolylation during post-translational processing in K. lactis. For the different types of media used in our fermentation, recombinant Cel7B was produced from yeast extract peptone galactose (YPGal), and yeast nitrogen base with casamino acid (YBC), but was not produced and no activity was detected from yeast nitrogen base (YNB). This experiment concluded that the Cel7B production requires the amino acid resources as part of fermentation medium. In experiments where recombinant Cel7B net activity was measured at 1% galactose initial concentration in YPGal and YBC media, higher enzyme activity was detected for the complex medium YPGal. Higher activity of recombinant Cel7B was detected for flask culture in 2% galactose compared to 1% galactose for YBC medium. Two bioreactor experiments were conducted under these culture conditions at 30°C, pH 7.0, dissolved oxygen of 50% of saturation, and 250 rpm agitation (variable depending on DO control) K. lactis-Cel7B yeast growth curves were quite reproducible with maximum optical density (O.D) at 600 nm of between 7 and 8 (when factoring dilution of 10:1). Galactose was consumed rapidly during the first 15 hours of bioreactor culture and recombinant Cel7B started to appear in the culture at 10-15 hours and increased thereafter up to a maximum of between 0.9 and 1.6 mg/mL/hr in these experiments. These bioreactor enzyme activity results are much higher than comparable experiments conducted with flask-scale culture (0.5 mg/mL/hr). In order to achieve the highest recombinant Cel7B activity from batch culture of K. lactis-Cel7B, based on this research it is best to use a complex medium, 2% initial galactose concentration, and an automated bioreactor where good control of temperature, pH, and dissolved oxygen can be achieved.