8 resultados para compressive well

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the compressive properties of concrete incorporating Mature Fine Tailings (MFTs) waste stream from a tar sands mining operation. The objectives of this study are to investigate material properties of the MFT material itself, as well as establish general feasibility of the utilization of MFT material in concrete mixtures through empirical data and visual observations. Investigations undertaken in this study consist of moisture content, materials finer than No. 200 sieve, Atterburg Limits as well as visual observations performed on MFT material as obtained. Control concrete mixtures as well as MFT replacement mixture designs (% by wt. of water) were guided by properties of the MFT material that were experimentally established. The experimental design consists of compression testing of 4”-diameter concrete cylinders of a control mixture, 30% MFT, 50% MFT and 70% MFT replacement mixtures with air-entrainer additive, as well as a control mixture and 30% MFT replacement mixture with no air-entrainer. A total of 6 mixtures (2 control mixtures, 4 replacement mixtures) moist-cured in lime water after 24 hours initial curing were tested for ultimate compressive strength at 7 days and 28 days in accordance to ASTM C39. The test results of fresh concrete material show that the addition of air-entrainer to the control mixture increases slump from 4” to 5.5”. However, the use of MFT material in concrete mixtures significantly decreases slump as compared to controls. All MFT replacement mixtures (30%, 50%, and 70%) with air-entrainer present slumps of 1”. 30% MFT with no air-entrainer presents a slump of 1.5”. It was found that 7-day ultimate compressive stress was not a good predictor of 28-day ultimate compressive stress. 28-day results indicate that the use of MFT material in concrete with air-entrainer decreases ultimate compressive stress for 30%, 50% and 70% MFT replacement amounts by 14.2%, 17.3% and 25.1% respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Ultra High Performance Concrete research involves observing early-age creep and shrinkage under a compressive load throughout multiple thermal curing regimes. The goal was to mimic the conditions that would be expected of a precast/prestressing plant in the United States, where UHPC beams would be produced quickly to maximize a manufacturing plant’s output. The practice of steam curing green concrete to accelerate compressive strengths for early release of the prestressing tendons was utilized (140°F [60°C], 95% RH, 14 hrs), in addition to the full thermal treatment (195°F [90°C], 95% RH, 48 hrs) while the specimens were under compressive loading. Past experimental studies on creep and shrinkage characteristics of UHPC have only looked at applying a creep load after the thermal treatment had been administered to the specimens, or on ambient cured specimens. However, this research looked at mimicking current U.S. precast/prestressed plant procedures, and thus characterized the creep and shrinkage characteristics of UHPC as it is thermally treated under a compressive load. Michigan Tech has three moveable creep frames to accommodate two loading criteria per frame of 0.2f’ci and 0.6f’ci. Specimens were loaded in the creep frames and moved into a custom built curing chamber at different times, mimicking a precast plant producing several beams throughout the week and applying a thermal cure to all of the beams over the weekend. This thesis presents the effects of creep strain due to the varying curing regimes. An ambient cure regime was used as a baseline for the comparison against the varying thermal curing regimes. In all cases of thermally cured specimens, the compressive creep and shrinkage strains are accelerated to a maximum strain value, and remain consistent after the administration of the thermal cure. An average creep coefficient for specimens subjected to a thermal cure was found to be 1.12 and 0.78 for the high and low load levels, respectively. Precast/pressed plants can expect that simultaneously thermally curing UHPC elements that are produced throughout the week does not impact the post-cure creep coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently nanoscale junctions consisting of 0-D nanostructures (single molecule) or 1-D nanostructures (semiconducting nanowire) sandwiched between two metal electrodes are successfully fabricated and characterized. What lacks in the recent developments is the understanding of the mechanism behind the observed phenomena at the level of atoms and electrons. For example, the origin of observed switching effect in a semiconducting nanowire due to the influence of an external gate bias is not yet understood at the electronic structure level. On the same context, different experimental groups have reported different signs in tunneling magneto-resistance for the same organic spin valve structure, which has baffled researchers working in this field. In this thesis, we present the answers to some of these subtle questions by investigating the charge and spin transport in different nanoscale junctions. A parameter-free, single particle Green’s function approach in conjunction with a posteriori density functional theory (DFT) involving a hybrid orbital dependent functional is used to calculate the tunneling current in the coherent transport limit. The effect of spin polarization is explicitly incorporated to investigate spin transport in a nanoscale junction. Through the electron transport studies in PbS nanowire junction, a new orbital controlled mechanism behind the switching of the current is proposed. It can explain the switching behavior, not only in PbS nanowire, but in other lead-chalcogenide nanowires as well. Beside this, the electronic structure properties of this nanowire are studied using periodic DFT. The quantum confinement effect was investigated by calculating the bandgap of PbS nanowires with different diameters. Subsequently, we explain an observed semiconducting to metallic phase transition of this nanowire by calculating the bandgap of the nanowire under uniform radial strain. The compressive radial strain on the nanowire was found to be responsible for the metallic to semiconducting phase transition. Apart from studying one dimensional nanostructure, we also present transport properties in zero dimensional single molecular junctions. We proposed a new codoping approach in a single molecular carborane junction, where a cation and an anion are simultaneously doped to find the role of a single atom in the device. The main purpose was to build a molecular junction where a single atom can dictate the flow of electrons in a circuit. Recent observations of both positive and negative sign in tunneling magnetoresistance (TMR) the using same organic spin-valve structure hasmystified researchers. From our spin dependent transport studies in a prototypical organic molecular tunneling device, we found that a 3% change in metal-molecule interfacial distance can alter the sign of TMR. Changing the interfacial distance by 3%, the number of participating eigenstates as well as their orbital characteristic changes for anti-parallel configuration of the magnetization at the two electrodes, leading to the sign reversal of the TMR. Apart from this, the magnetic proximity effect under applied bias is investigated quantitatively, which can be used to understand the observed unexpectedmagnetismin carbon basedmaterials when they are in close proximity with magnetic substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Michigan Basin is located in the upper Midwest region of the United States and is centered geographically over the Lower Peninsula of Michigan. It is filled primarily with Paleozoic carbonates and clastics, overlying Precambrian basement rocks and covered by Pleistocene glacial drift. In Michigan, more than 46,000 wells have been drilled in the basin, many producing significant quantities of oil and gas since the 1920s in addition to providing a wealth of data for subsurface visualization. Well log tomography, formerly log-curve amplitude slicing, is a visualization method recently developed at Michigan Technological University to correlate subsurface data by utilizing the high vertical resolution of well log curves. The well log tomography method was first successfully applied to the Middle Devonian Traverse Group within the Michigan Basin using gamma ray log curves. The purpose of this study is to prepare a digital data set for the Middle Devonian Dundee and Rogers City Limestones, apply the well log tomography method to this data and from this application, interpret paleogeographic trends in the natural radioactivity. Both the Dundee and Rogers City intervals directly underlie the Traverse Group and combined are the most prolific reservoir within the Michigan Basin. Differences between this study and the Traverse Group include increased well control and “slicing” of a more uniform lithology. Gamma ray log curves for the Dundee and Rogers City Limestones were obtained from 295 vertical wells distributed over the Lower Peninsula of Michigan, converted to Log ASCII Standard files, and input into the well log tomography program. The “slicing” contour results indicate that during the formation of the Dundee and Rogers City intervals, carbonates and evaporites with low natural radioactive signatures on gamma ray logs were deposited. This contrasts the higher gamma ray amplitudes from siliciclastic deltas that cyclically entered the basin during Traverse Group deposition. Additionally, a subtle north-south, low natural radioactive trend in the center of the basin may correlate with previously published Dundee facies tracts. Prominent trends associated with the distribution of limestone and dolomite are not observed because the regional range of gamma ray values for both carbonates are equivalent in the Michigan Basin and additional log curves are needed to separate these lithologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a statistical inference scenario, the estimation of target signal or its parameters is done by processing data from informative measurements. The estimation performance can be enhanced if we choose the measurements based on some criteria that help to direct our sensing resources such that the measurements are more informative about the parameter we intend to estimate. While taking multiple measurements, the measurements can be chosen online so that more information could be extracted from the data in each measurement process. This approach fits well in Bayesian inference model often used to produce successive posterior distributions of the associated parameter. We explore the sensor array processing scenario for adaptive sensing of a target parameter. The measurement choice is described by a measurement matrix that multiplies the data vector normally associated with the array signal processing. The adaptive sensing of both static and dynamic system models is done by the online selection of proper measurement matrix over time. For the dynamic system model, the target is assumed to move with some distribution and the prior distribution at each time step is changed. The information gained through adaptive sensing of the moving target is lost due to the relative shift of the target. The adaptive sensing paradigm has many similarities with compressive sensing. We have attempted to reconcile the two approaches by modifying the observation model of adaptive sensing to match the compressive sensing model for the estimation of a sparse vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through the use of rhetoric centered on authority and risk avoidance, scientific method has co-opted knowledge, especially women's everyday and experiential knowledge in the domestic sphere. This, in turn, has produced a profound affect on technical communication in the present day. I am drawing on rhetorical theory to study cookbooks and recipes for their contributions to changes in instructional texts. Using the rhetorical lenses of metis (cunning intelligence), kairos (timing and fitness) and mneme (memory), I examine the way in which recipes and cookbooks are constructed, used and perceived. This helps me uncover lost voices in history, the voices of women who used recipes, produced cookbooks and changed the way instructions read. Beginning with the earliest cookbooks and recipes, but focusing on the pivotal temporal interval of 1870-1935, I investigate the writing and rhetorical forces shaping instruction sets and domestic discourse. By the time of scientific cooking and domestic science, everyday and experiential knowledge were being excluded to make room for scientific method and the industrial values of the public sphere. In this study, I also assess how the public sphere, via Cooperative Extension Services and other government agencies, impacted the domestic sphere, further devaluing everyday knowledge in favor of the public scientific model. I will show how the changes in the production of food, cookbooks and recipes were related to changes in technical communication. These changes had wide rippling effects on the field of technical communication. By returning to some of the tenets and traditions of everyday and experiential knowledge, technical communication scholars, practitioners and instructors today can find new ways to encounter technical communication, specifically regarding the creation of instructional texts. Bringing cookbooks, recipes and everyday knowledge into the classroom and the field engenders a new realm of epistemological possibilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for a stronger and more durable building material is becoming more important as the structural engineering field expands and challenges the behavioral limits of current materials. One of the demands for stronger material is rooted in the effects that dynamic loading has on a structure. High strain rates on the order of 101 s-1 to 103 s-1, though a small part of the overall types of loading that occur anywhere between 10-8 s-1 to 104 s-1 and at any point in a structures life, have very important effects when considering dynamic loading on a structure. High strain rates such as these can cause the material and structure to behave differently than at slower strain rates, which necessitates the need for the testing of materials under such loading to understand its behavior. Ultra high performance concrete (UHPC), a relatively new material in the U.S. construction industry, exhibits many enhanced strength and durability properties compared to the standard normal strength concrete. However, the use of this material for high strain rate applications requires an understanding of UHPC’s dynamic properties under corresponding loads. One such dynamic property is the increase in compressive strength under high strain rate load conditions, quantified as the dynamic increase factor (DIF). This factor allows a designer to relate the dynamic compressive strength back to the static compressive strength, which generally is a well-established property. Previous research establishes the relationships for the concept of DIF in design. The generally accepted methodology for obtaining high strain rates to study the enhanced behavior of compressive material strength is the split Hopkinson pressure bar (SHPB). In this research, 83 Cor-Tuf UHPC specimens were tested in dynamic compression using a SHPB at Michigan Technological University. The specimens were separated into two categories: ambient cured and thermally treated, with aspect ratios of 0.5:1, 1:1, and 2:1 within each category. There was statistically no significant difference in mean DIF for the aspect ratios and cure regimes that were considered in this study. DIF’s ranged from 1.85 to 2.09. Failure modes were observed to be mostly Type 2, Type 4, or combinations thereof for all specimen aspect ratios when classified according to ASTM C39 fracture pattern guidelines. The Comite Euro-International du Beton (CEB) model for DIF versus strain rate does not accurately predict the DIF for UHPC data gathered in this study. Additionally, a measurement system analysis was conducted to observe variance within the measurement system and a general linear model analysis was performed to examine the interaction and main effects that aspect ratio, cannon pressure, and cure method have on the maximum dynamic stress.