7 resultados para complex text layout

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La Yeguada volcanic complex is one of three Quaternary volcanic centers in Panama, and is located on the southern slope of the Cordillera Central mountain range in western Panama, province of Veraguas. To assess potential geologic hazards, this study focused on the main dome complex near the village of La Laguna and also examined a cinder cone 10 km to the northwest next to the village of Media Luna. Based on newly obtained 40Ar/39Ar ages, the most recent eruption occurred approximately 32 000 years ago at the Media Luna cinder cone, while the youngest dated eruption at the main dome complex occurred 0.357 ± 0.019 Ma, producing the Castillo dome unit. Cerro Picacho is a separate dome located 1.5 km east of the main complex with a date of 4.47 ± 0.23 Ma, and the El Satro Pyroclastic Flow unit surrounds the northern portion of the volcanic complex and has an age of 11.26 ± 0.17 Ma. No Holocene (10 000 years ago to present) activity is recorded at the La Yeguada volcanic complex and therefore, it is unlikely to produce another eruption. The emergence of a new cinder cone is a possibility, but the associated hazards tend to be low and localized, and this does not pose a significant threat to the small communities scattered throughout the area. The main geologic hazard at the La Yeguada volcanic complex is from landslides coming off the many steep slopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measuring shallow seismic sources provides a way to reveal processes that cannot be directly observed, but the correct interpretation and value of these signals depend on the ability to distinguish source from propagation effects. Furthermore, seismic signals produced by a resonating source can look almost identical to those produced by impulsive sources, but modified along the path. Distinguishing these two phenomena can be accomplished by examining the wavefield with small aperture arrays or by recording seismicity near to the source when possible. We examine source and path effects in two different environments: Bering Glacier, Alaska and Villarrica Volcano, Chile. Using three 3-element seismic arrays near the terminus of the Bering Glacier, we have identified and located both terminus calving and iceberg breakup events. We show that automated array analysis provided a robust way to locate icequake events using P waves. This analysis also showed that arrivals within the long-period codas were incoherent within the small aperture arrays, demonstrating that these codas previously attributed to crack resonance were in fact a result of a complicated path rather than a source effect. At Villarrica Volcano, seismometers deployed from near the vent to ~10 km revealed that a several cycle long-period source signal recorded at the vent appeared elongated in the far-field. We used data collected from the stations nearest to the vent to invert for the repetitive seismic source, and found it corresponded to a shallow force within the lava lake oriented N75°E and dipping 7° from horizontal. We also used this repetitive signal to search the data for additional seismic and infrasonic properties which included calculating seismic-acoustic delay times, volcano acoustic-seismic ratios and energies, event frequency, and real-time seismic amplitude measurements. These calculations revealed lava lake level and activity fluctuations consistent with lava lake level changes inferred from the persistent infrasonic tremor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective techniques for organizing and visualizing large image collections are in growing demand as visual search gets increasingly popular. iMap is a treemap representation for visualizing and navigating image search and clustering results based on the evaluation of image similarity using both visual and textual information. iMap not only makes effective use of available display area to arrange images but also maintains stable update when images are inserted or removed during the query. A key challenge of using iMap lies in the difficult to follow and track the changes when updating the image arrangement as the query image changes. For many information visualization applications, showing the transition when interacting with the data is critically important as it can help users better perceive the changes and understand the underlying data. This work investigates the effectiveness of animated transition in a tiled image layout where the spiral arrangement of the images is based on their similarity. Three aspects of animated transition are considered, including animation steps, animation actions, and flying paths. Exploring and weighting the advantages and disadvantages of different methods for each aspect and in conjunction with the characteristics of the spiral image layout, we present an integrated solution, called AniMap, for animating the transition from an old layout to a new layout when a different image is selected as the query image. To smooth the animation and reduce the overlap among images during the transition, we explore different factors that might have an impact on the animation and propose our solution accordingly. We show the effectiveness of our animated transition solution by demonstrating experimental results and conducting a comparative user study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional decision making research has often focused on one's ability to choose from a set of prefixed options, ignoring the process by which decision makers generate courses of action (i.e., options) in-situ (Klein, 1993). In complex and dynamic domains, this option generation process is particularly critical to understanding how successful decisions are made (Zsambok & Klein, 1997). When generating response options for oneself to pursue (i.e., during the intervention-phase of decision making) previous research has supported quick and intuitive heuristics, such as the Take-The-First heuristic (TTF; Johnson & Raab, 2003). When generating predictive options for others in the environment (i.e., during the assessment-phase of decision making), previous research has supported the situational-model-building process described by Long Term Working Memory theory (LTWM; see Ward, Ericsson, & Williams, 2013). In the first three experiments, the claims of TTF and LTWM are tested during assessment- and intervention-phase tasks in soccer. To test what other environmental constraints may dictate the use of these cognitive mechanisms, the claims of these models are also tested in the presence and absence of time pressure. In addition to understanding the option generation process, it is important that researchers in complex and dynamic domains also develop tools that can be used by `real-world' professionals. For this reason, three more experiments were conducted to evaluate the effectiveness of a new online assessment of perceptual-cognitive skill in soccer. This test differentiated between skill groups and predicted performance on a previously established test and predicted option generation behavior. The test also outperformed domain-general cognitive tests, but not a domain-specific knowledge test when predicting skill group membership. Implications for theory and training, and future directions for the development of applied tools are discussed.