2 resultados para cell mechanics

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding how a living cell behaves has become a very important topic in today’s research field. Hence, different sensors and testing devices have been designed to test the mechanical properties of these living cells. This thesis presents a method of micro-fabricating a bio-MEMS based force sensor which is used to measure the force response of living cells. Initially, the basic concepts of MEMS have been discussed and the different micro-fabrication techniques used to manufacture various MEMS devices have been described. There have been many MEMS based devices manufactured and employed for testing many nano-materials and bio-materials. Each of the MEMS based devices described in this thesis use a novel concept of testing the specimens. The different specimens tested are nano-tubes, nano-wires, thin film membranes and biological living cells. Hence, these different devices used for material testing and cell mechanics have been explained. The micro-fabrication techniques used to fabricate this force sensor has been described and the experiments preformed to successfully characterize each step in the fabrication have been explained. The fabrication of this force sensor is based on the facilities available at Michigan Technological University. There are some interesting and uncommon concepts in MEMS which have been observed during this fabrication. These concepts in MEMS which have been observed are shown in multiple SEM images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of advanced materials aimed at improving human life has been performed since time immemorial. Such studies have created everlasting and greatly revered monuments and have helped revolutionize transportation by ushering the age of lighter–than–air flying machines. Hence a study of the mechanical behavior of advanced materials can pave way for their use for mankind’s benefit. In this school of thought, the aim of this dissertation is to broadly perform two investigations. First, an efficient modeling approach is established to predict the elastic response of cellular materials with distributions of cell geometries. Cellular materials find important applications in structural engineering. The approach does not require complex and time-consuming computational techniques usually associated with modeling such materials. Unlike most current analytical techniques, the modeling approach directly accounts for the cellular material microstructure. The approach combines micropolar elasticity theory and elastic mixture theory to predict the elastic response of cellular materials. The modeling approach is applied to the two dimensional balsa wood material. Predicted properties are in good agreement with experimentally determined properties, which emphasizes the model’s potential to predict the elastic response of other cellular solids, such as open cell and closed cell foams. The second topic concerns intraneural ganglion cysts which are a set of medical conditions that result in denervation of the muscles innervated by the cystic nerve leading to pain and loss of function. Current treatment approaches only temporarily alleviate pain and denervation which, however, does not prevent cyst recurrence. Hence, a mechanistic understanding of the pathogenesis of intraneural ganglion cysts can help clinicians understand them better and therefore devise more effective treatment options. In this study, an analysis methodology using finite element analysis is established to investigate the pathogenesis of intraneural ganglion cysts. Using this methodology, the propagation of these cysts is analyzed in their most common site of occurrence in the human body i.e. the common peroneal nerve. Results obtained using finite element analysis show good correlation with clinical imaging patterns thereby validating the promise of the method to study cyst pathogenesis.