7 resultados para buck converter,conducted emission,2-150kHz,DC-microgrid

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future power grids are envisioned to be serviced by heterogeneous arrangements of renewable energy sources. Due to their stochastic nature, energy storage distribution and management are pivotal in realizing microgrids serviced heavily by renewable energy assets. Identifying the required response characteristics to meet the operational requirements of a power grid are of great importance and must be illuminated in order to discern optimal hardware topologies. Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) presents the tools to identify such characteristics. By using energy storage as actuation within the closed loop controller, the response requirements may be identified while providing a decoupled controller solution. A DC microgrid servicing a fixed RC load through source and bus level storage managed by HSSPFC was realized in hardware. A procedure was developed to calibrate the DC microgrid architecture of this work to the reduced order model used by the HSSPFC law. Storage requirements were examined through simulation and experimental testing. Bandwidth contributions between feed forward and PI components of the HSSPFC law are illuminated and suggest the need for well-known system losses to prevent the need for additional overhead in storage allocations. The following work outlines the steps taken in realizing a DC microgrid and presents design considerations for system calibration and storage requirements per the closed loop controls for future DC microgrids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polylactide (PLA) is a biodegradable polymer that has been used in particle form for drug release, due to its biocompatibility, tailorable degradation kinetics, and desirable mechanical properties. Active pharmaceutical ingredients (APIs) may be either dissolved or encapsulated within these biomaterials to create micro- or nanoparticles. Delivery of an AIP within fine particles may overcome solubility or stability issues that can result in early elimination or degradation of the AIP in a hostile biological environment. Furthermore, it is a promising method for controlling the rate of drug delivery and dosage. The goal of this project is to develop a simple and cost-effective device that allows us to produce monodisperse micro- and nanocapsules with controllable size and adjustable sheath thickness on demand. To achieve this goal, we have studied the dual-capillary electrospray and pulsed electrospray. Dual-capillary electrospray has received considerable attention in recent years due to its ability to create core-shell structures in a single-step. However, it also increases the difficulty of controlling the inner and outer particle morphology, since two simultaneous flows are required. Conventional electrospraying has been mainly conducted using direct-current (DC) voltage with little control over anything but the electrical potential. In contrast, control over the input voltage waveform (i.e. pulsing) in electrospraying offers greater control over the process variables. Poly(L-lactic acid) (PLLA) microspheres and microcapsules were successfully fabricated via pulsed-DC electrospray and dual-capillary electrospray, respectively. Core shell combinations produced include: Water/PLLA, PLLA/polyethylene glycol (PEG), and oleic Acid/PLLA. In this study, we designed a novel high-voltage pulse forming network and a set of new designs for coaxial electrospray nozzles. We also investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size and uniformity. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. In addition, factors such as polymer concentration, solvent type, feed flow rate, collection method, temperature, and humidity can significantly affect the size and shape of the particles formed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ion impact emission cross sections for eleven transitions from the 5p56p configuration to the 5p56s configuration of neutral xenon occurring in the spectral region between 700 nm and 1000 nm have been measured experimentally. Collisions between both singly- and doublyionized xenon and neutral xenon have been studied. These cross sections are of primary use in the development of a spectrographic diagnostic for Hall effect thruster plasma. A detailed discussion of the experimental methods and the subsequent data reduction is included. The results are presented and the importance of these data for spectrographic emission models of Hall effect thruster plasmas is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biofuels are alternative fuels that have the promise of reducing reliance on imported fossil fuels and decreasing emission of greenhouse gases from energy consumption. This thesis analyses the environmental impacts focusing on the greenhouse gas (GHG) emissions associated with the production and delivery of biofuel using the new Integrated Hydropyrolysis and Hydroconversion (IH2) process. The IH2 process is an innovative process for the conversion of woody biomass into hydrocarbon liquid transportation fuels in the range of gasoline and diesel. A cradle-to-grave life cycle assessment (LCA) was used to calculate the greenhouse gas emissions associated with diverse feedstocks production systems and delivery to the IH2 facility plus producing and using these new renewable liquid fuels. The biomass feedstocks analyzed include algae (microalgae), bagasse from a sugar cane-producing locations such as Brazil or extreme southern US, corn stover from Midwest US locations, and forest feedstocks from a northern Wisconsin location. The life cycle greenhouse gas (GHG) emissions savings of 58%–98% were calculated for IH2 gasoline and diesel production and combustion use in vehicles compared to fossil fuels. The range of savings is due to different biomass feedstocks and transportation modes and distances. Different scenarios were conducted to understand the uncertainties in certain input data to the LCA model, particularly in the feedstock production section, the IH2 biofuel production section, and transportation sections.