3 resultados para bronchodilating agent
em Digital Commons - Michigan Tech
Resumo:
This dissertation involves study of various aspects of sulfoxide chemistry. Specifically designed t-butyl and propanenitrile sulfoxides tethered to indole-2-carboxamide were used as a source of intramolecular sulfenylating agents to synthesize novel indolo[3,2-b]-1-5-benzothiazepinones which are structurally analogous to the other biologically active benzothiazepinones. This study reveals that the intramolecular cyclization of sulfoxide follows an electrophilic sulfenylation (Sulfoxide Electrophilic Sulfenylation, SES) reaction pathway. Evidence of the absence of sulfenic acid as a transient reactive intermediate in such intramolecular cyclization is also provided. In another study, sulfoxide was used as a “protecting group” of thioether to synthesize 8-membered, indole substituted, thiazocine-2-acetic acid derivative via Ring Closing Metathesis (RCM). Protection (oxidation) of inert (to RCM) sulfide to sulfoxide followed by RCM produced cyclized product in good yields. Deprotection (reduction) of sulfoxide was achieved using Lawessons Reagent (L.R.). Application of the sulfide-sulfoxide redox cycle to solve the existing difficulties in using RCM methodology to thioethers is illustrated. A new design of a “molecular brake”, based on the sulfide-sulfoxide redox cycle is described. N-Ar rotation in simple isoindolines is controlled by the oxidation state of the proximate sulfur atom. Sulfide [S(II)] shows “free” [brake OFF] N-Ar rotation whereas sulfoxide displayed hindered [brake ON] N-Ar rotation. The semi-empirical molecular orbital (PM3) calculations revealed concerted pyramidalization of amidic nitrogen with N-Ar rotation.
Resumo:
The complexity and challenge created by asphalt material motivates researchers and engineers to investigate the behavior of this material to develop a better understanding, and improve the performance of asphalt pavement. Over decades, a wide range of modification at macro, meso, micro and nano scales have been conducted to improve the performance of asphalt pavement. This study was initiated to utilize the newly developed asphalt modifier pellets. These pellets consisted of different combinations of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE) and titanate coupling agent (CA) to improve the asphalt binder as well as pavement performance across a wide range of temperature and loading pace. These materials were used due to their unique characteristics and promising findings from various industries, especially as modifiers in pavement material. The challenge is to make sure the CaCO3 disperses very well in the mixture. The rheological properties of neat asphalt binder PG58-28 and modified asphalt binder (PG58-28/LLDPE, PG58-28/CaCO3, PG58-28/CaCO3/LLDPE, and PG58-28/CaCO3/LLDPE/CA), were determined using rotational viscometer (RV) test, dynamic shear rheometer (DSR) test and bending beam rheometer test. In the DSR test, the specimens were evaluated using frequency sweep and multiple shear creep recovery (MSCR). The asphalt mixtures (aggregate/PG58-28, aggregate/ PG58-28/LLDPE, aggregate/PG58-28/CaCO3, aggregate/PG58-28/LLDPE/CaCO3 and aggregate/PG58-28/LLDPE/CaCO3/CA) were evaluated using the four point beam fatigue test, the dynamic modulus (E*) test, and tensile strength test (to determines tensile strength ratio, TSR). The RV test results show that all modified asphalt binders have a higher viscosity compared to the neat asphalt binder (PG58-28). Based on the Jnr results (using MSCR test), all the modified asphalt binders have a better resistance to rutting compared to the neat asphalt binder. A higher modifier contents have resulted in a better recovery percentage of asphalt binder (higher resistance to rutting), except the specimens prepared using PECC’s modified asphalt binder (PG58-28/CaCO3/LLDPE). The BBR test results show that all the modified asphalt binders have shown comparable performance in term of resistance to low temperature cracking, except the specimen prepared using the LLDPE modifier. Overall, 5 wt% LLDPE modified asphalt binder was found to be the best asphalt binder in terms of resistance to rutting. Meanwhile, 3 wt% PECC-1CA’s modified asphalt binder can be considered as the best (in terms of resistance to thermal cracking) with the lowest mean critical cracking temperature. The appearance of CaCO3 was found useful merely in improving the resistance to fatigue cracking of asphalt mixture. However, application of LLDPE has undermined the fatigue life of asphalt mixtures. Adding LLDPE and coupling agent throughout this study does not sufficiently help in terms of elastic behavior which essential to enhance the resistance to fatigue cracking. In contrast, application of LLDPE has increased the indirect tensile strength values and TSR of asphalt mixtures, indicates a better resistance to moisture damage. The usage of the coupling agent does not change the behavior of the asphalt mixture, which could be due to imbalance effects resulted by combination of LLDPE and CaCO3 in asphalt binder. Further investigations without incorporating CaCO3 should be conducted further. To investigate the feasibility of using LLDPE and coupling agent as modifiers in asphalt pavements, more research should be conducted on different percentages of LLDPE (less than 3 wt%), and at the higher and w wider range of coupling agent content, from 3 wt% to 7 wt% based on the polymer mass.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.