2 resultados para broadband tuning
em Digital Commons - Michigan Tech
Resumo:
The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery “wastes”: lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization ( Peptidoglycan (a bacterial cell wall material) was copolymerized with poly-(3-hydroxybutyrate), a common polyhydroxyalkanoate produced by bacteria with the objective of determining if a useful material could be obtained with a less rigorous work-up on harvesting polyhydroxyalkanoates. The copolyesteramide product having 25 wt.% peptidoglycan from a highly purified peptidoglycan increased thermal stability by 100-200 °C compared to the poly-(3-hydroxybutyrate) control, while a less pure peptidoglycan, harvested from B. megaterium (ATCC 11561), gave a 25-50 °C increase in thermal stability. Both copolymers absorbed more moisture than pure poly-(3-hydroxybutyrate). The results suggest that a less rigorously harvested and purified polyhydroxyalkanoate might be useful for some applications.
Resumo:
Reflection seismic data from the F3 block in the Dutch North Sea exhibits many large-amplitude reflections at shallow horizons, typically categorized as “brightspots ” (Schroot and Schuttenhelm, 2003), mainly because of their bright appearance. In most cases, these bright reflections show a significant “flatness” contrasting with local structural trends. While flatspots are often easily identified in thick reservoirs, we have often occasionally observed apparent flatspot tuning effects at fluid contacts near reservoir edges and in thin reservoir beds, while only poorly understanding them. We conclude that many of the shallow large-amplitude reflections in block F3 are dominated by flatspots, and we investigate the thin-bed tuning effects that such flatspots cause as they interact with the reflection from the reservoir’s upper boundary. There are two possible effects to be considered: (1) the “wedge-model” tuning effects of the flatspot and overlying brightspots, dimspots, or polarity-reversals; and (2) the stacking effects that result from possible inclusion of post-critical flatspot reflections in these shallow sands. We modeled the effects of these two phenomena for the particular stratigraphic sequence in block F3. Our results suggest that stacking of post-critical flatspot reflections can cause similar large-amplitude but flat reflections, in some cases even causing an interface expected to produce a ‘dimspot’ to appear as a ‘brightspot’. Analysis of NMO stretch and muting shows the likely exclusion of critical offset data in stacked output. If post-critical reflections are included in stacking, unusual results will be observed. In the North Sea case, we conclude the tuning effect was the primary reason causing for the brightness and flatness of these reflections. However, it is still important to note that care should be taken while applying muting on reflections with wide range of incidence angles and the inclusion of critical offset data may cause some spurious features in the stacked section.