4 resultados para automated full waveform logging system

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Environmental Process and Simulation Center (EPSC) at Michigan Technological University started accommodating laboratories for an Environmental Engineering senior level class CEE 4509 Environmental Process and Simulation Laboratory since 2004. Even though the five units that exist in EPSC provide the students opportunities to have hands-on experiences with a wide range of water/wastewater treatment technologies, a key module was still missing for the student to experience a full cycle of treatment. This project fabricated a direct-filtration pilot system in EPSC and generated a laboratory manual for education purpose. Engineering applications such as clean bed head loss calculation, backwash flowrate determination, multimedia density calculation and run length prediction are included in the laboratory manual. The system was tested for one semester and modifications have been made both to the direct filtration unit and the laboratory manual. Future work is also proposed to further refine the module.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-stabilization is a property of a distributed system such that, regardless of the legitimacy of its current state, the system behavior shall eventually reach a legitimate state and shall remain legitimate thereafter. The elegance of self-stabilization stems from the fact that it distinguishes distributed systems by a strong fault tolerance property against arbitrary state perturbations. The difficulty of designing and reasoning about self-stabilization has been witnessed by many researchers; most of the existing techniques for the verification and design of self-stabilization are either brute-force, or adopt manual approaches non-amenable to automation. In this dissertation, we first investigate the possibility of automatically designing self-stabilization through global state space exploration. In particular, we develop a set of heuristics for automating the addition of recovery actions to distributed protocols on various network topologies. Our heuristics equally exploit the computational power of a single workstation and the available parallelism on computer clusters. We obtain existing and new stabilizing solutions for classical protocols like maximal matching, ring coloring, mutual exclusion, leader election and agreement. Second, we consider a foundation for local reasoning about self-stabilization; i.e., study the global behavior of the distributed system by exploring the state space of just one of its components. It turns out that local reasoning about deadlocks and livelocks is possible for an interesting class of protocols whose proof of stabilization is otherwise complex. In particular, we provide necessary and sufficient conditions – verifiable in the local state space of every process – for global deadlock- and livelock-freedom of protocols on ring topologies. Local reasoning potentially circumvents two fundamental problems that complicate the automated design and verification of distributed protocols: (1) state explosion and (2) partial state information. Moreover, local proofs of convergence are independent of the number of processes in the network, thereby enabling our assertions about deadlocks and livelocks to apply on rings of arbitrary sizes without worrying about state explosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid MIMO Phased-Array Radar (HMPAR) is an emerging technology that combines MIMO (multiple-in, multiple-out) radar technology with phased-array radar technology. The new technology is in its infancy, but much of the theoretical work for this specific project has already been completed and is explored in great depth in [1]. A brief overview of phased-array radar systems, MIMO radar systems, and the HMPAR paradigm are explored in this paper. This report is the culmination of an effort to support research in MIMO and HMPAR utilizing a concept called intrapulse beamscan. Using intrapulse beamscan, arbitrary spatial coverage can be achieved within one MIMO beam pulse. Therefore, this report focuses on designing waveforms for MIMO radar systems with arbitrary spatial coverage using that phenomenon. With intrapulse beamscan, scanning is done through phase-modulated signal design within one pulse rather than phase-shifters in the phased array over multiple pulses. In addition to using this idea, continuous phase modulation (CPM) signals are considered for their desirable peak-to-average ratio property as well as their low spectral leakage. These MIMO waveforms are designed with three goals in mind. The first goal is to achieve flexible spatial coverage while utilizing intrapulse beamscan. As with almost any radar system, we wish to have flexibility in where we send our signal energy. The second goal is to maintain a peak-to-average ratio close to 1 on the envelope of these waveforms, ensuring a signal that is close to constant modulus. It is desired to have a radar system transmit at the highest available power; not doing so would further diminish the already very small return signals. The third goal is to ensure low spectral leakage using various techniques to limit the bandwidth of the designed signals. Spectral containment is important to avoid interference with systems that utilize nearby frequencies in the electromagnetic spectrum. These three goals are realized allowing for limitations of real radar systems. In addition to flexible spatial coverage, the report examines the spectral properties of utilizing various space-filling techniques for desired spatial areas. The space-filling techniques examined include Hilbert/Peano curves and standard raster scans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study develops an automated analysis tool by combining total internal reflection fluorescence microscopy (TIRFM), an evanescent wave microscopic imaging technique to capture time-sequential images and the corresponding image processing Matlab code to identify movements of single individual particles. The developed code will enable us to examine two dimensional hindered tangential Brownian motion of nanoparticles with a sub-pixel resolution (nanoscale). The measured mean square displacements of nanoparticles are compared with theoretical predictions to estimate particle diameters and fluid viscosity using a nonlinear regression technique. These estimated values will be confirmed by the diameters and viscosities given by manufacturers to validate this analysis tool. Nano-particles used in these experiments are yellow-green polystyrene fluorescent nanospheres (200 nm, 500 nm and 1000 nm in diameter (nominal); 505 nm excitation and 515 nm emission wavelengths). Solutions used in this experiment are de-ionized (DI) water, 10% d-glucose and 10% glycerol. Mean square displacements obtained near the surface shows significant deviation from theoretical predictions which are attributed to DLVO forces in the region but it conforms to theoretical predictions after ~125 nm onwards. The proposed automation analysis tool will be powerfully employed in the bio-application fields needed for examination of single protein (DNA and/or vesicle) tracking, drug delivery, and cyto-toxicity unlike the traditional measurement techniques that require fixing the cells. Furthermore, this tool can be also usefully applied for the microfluidic areas of non-invasive thermometry, particle tracking velocimetry (PTV), and non-invasive viscometry.