2 resultados para attainable yield
em Digital Commons - Michigan Tech
Resumo:
El Balsamar is a community that relies upon coffee trees intercropped with the balsamo tree (Myroxylon balsamum L. Harms) for a substantial portion of household income. The balsamo tree is valued for its resin which is used as medicine in the community and sold commercially. Farmers believe that the shade from the balsamo tree decreases coffee yield compared to the shade from non balsamo species. Thirty coffee farms were studied, each set up as a paired plot. When cover type was balsamo, coffee yield was more likely to decrease. Plots with higher basal area were more likely to be balsamo cover type. As basal area increased, coffee yield decreased. Although coffee yield is lower under balsamo cover type, farmers still continue to plant and manage coffee under this cover type. Farmers accept a lower coffee yield because balsamo resin provides an important income source. Farmers rely on the community cooperative to provide them work to support their households. The cooperative relies on the farmers to provide the labor needed to harvest coffee and extract balsamo resin.
Resumo:
With proper application of Best Management Practices (BMPs), the impact from the sediment to the water bodies could be minimized. However, finding the optimal allocation of BMP can be difficult, since there are numerous possible options. Also, economics plays an important role in BMP affordability and, therefore, the number of BMPs able to be placed in a given budget year. In this study, two methodologies are presented to determine the optimal cost-effective BMP allocation, by coupling a watershed-level model, Soil and Water Assessment Tool (SWAT), with two different methods, targeting and a multi-objective genetic algorithm (Non-dominated Sorting Genetic Algorithm II, NSGA-II). For demonstration, these two methodologies were applied to an agriculture-dominant watershed located in Lower Michigan to find the optimal allocation of filter strips and grassed waterways. For targeting, three different criteria were investigated for sediment yield minimization, during the process of which it was found that the grassed waterways near the watershed outlet reduced the watershed outlet sediment yield the most under this study condition, and cost minimization was also included as a second objective during the cost-effective BMP allocation selection. NSGA-II was used to find the optimal BMP allocation for both sediment yield reduction and cost minimization. By comparing the results and computational time of both methodologies, targeting was determined to be a better method for finding optimal cost-effective BMP allocation under this study condition, since it provided more than 13 times the amount of solutions with better fitness for the objective functions while using less than one eighth of the SWAT computational time than the NSGA-II with 150 generations did.