2 resultados para arm activity monitoring

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used differential GPS measurements from a 13 station GPS network spanning the Santa Ana Volcano and Coatepeque Caldera to characterize the inter-eruptive activity and tectonic movements near these two active and potentially hazardous features. Caldera-forming events occurred from 70-40 ka and at Santa Ana/Izalco volcanoes eruptive activity occurred as recently as 2005. Twelve differential stations were surveyed for 1 to 2 hours on a monthly basis from February through September 2009 and tied to a centrally located continuous GPS station, which serves as the reference site for this volcanic network. Repeatabilities of the averages from 20-minute sessions taken over 20 hours or longer range from 2-11 mm in the horizontal (north and east) components of the inter-station baselines, suggesting a lower detection limit for the horizontal components of any short-term tectonic or volcanic deformation. Repeatabilities of the vertical baseline component range from 12-34 mm. Analysis of the precipitable water vapor in the troposphere suggests that tropospheric decorrelation as a function of baseline lengths and variable site elevations are the most likely sources of vertical error. Differential motions of the 12 sites relative to the continuous reference site reveal inflation from February through July at several sites surrounding the caldera with vertical displacements that range from 61 mm to 139 mm followed by a lower magnitude deflation event on 1.8-7.4 km-long baselines. Uplift rates for the inflationary period reach 300 mm/yr with 1σ uncertainties of +/- 26 – 119 mm. Only one other station outside the caldera exhibits a similar deformation trend, suggesting a localized source. The results suggest that the use of differential GPS measurements from short duration occupations over short baselines can be a useful monitoring tool at sub-tropical volcanoes and calderas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical analyses of temporal relationships between large earthquakes and volcanic eruptions suggest seismic waves may trigger eruptions even over great (>1000 km) distances, although the causative mechanism is not well constrained. In this study the relationship between large earthquakes and subtle changes in volcanic activity was investigated in order to gain greater insight into the relationship between dynamic stresses propagated by surface waves and volcanic response. Daily measurements from the Ozone Monitoring Instrument (OMI), onboard the Aura satellite, provide constraints on volcanic sulfur-dioxide (SO2) emission rates as a measure of subtle changes in activity. Time series of SO2 emission rates were produced from OMI data for thirteen persistently active volcanoes from 1 October 2004 to 30 September 2010. In order to quantify the affect of earthquakes at teleseismic distances, we modeled surface-wave amplitudes from the source mechanisms of moment magnitude (Mw) ≥7 earthquakes, and calculated the Peak Dynamic Stress (PDS). We assessed the influence of earthquakes on volcanic activity in two ways: 1) by identifying increases in the SO2 time series data and looking for causative earthquakes and 2) by examining the average emission rate before and after each earthquake. In the first, the SO2 time series for each volcano was used to calculate a baseline threshold for comparison with post-earthquake emission. Next, we generated a catalog of responses based on sustained SO2 emission increases above this baseline. Delay times between each SO2 response and each prior earthquake were analyzed using both the actual earthquake catalog, and a randomly generated catalog of earthquakes. This process was repeated for each volcano. Despite varying multiple parameters, this analysis did not demonstrate a clear relationship between earthquake-generated PDS and SO2 emission. However, the second analysis, which was based on the occurrence of large earthquakes indicated a response at most volcanoes. Using the PDS calculations as a filtering criterion for the earthquake catalog, the SO2 mass for each volcano was analyzed in 28-day windows centered on the earthquake origin time. If the average SO2 mass after the earthquake was greater than an arbitrary percentage of pre-earthquake mass, we identified the volcano as having a response to the event. This window analysis provided insight on what type of volcanic activity is more susceptible to triggering by dynamic stress. The volcanoes with very open systems included in this study, Ambrym, Gaua, Villarrica, Erta Ale and, Turrialba, showed a clear response to dynamic stress while the volcanoes with more closed systems, Merapi, Semeru, Fuego, Pacaya, and Bagana, showed no response.