3 resultados para antenna configuration

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Most of the definitions used in the thesis will be defined, and we provide a basic survey of topics in graph theory and design theory pertinent to the topics studied in this thesis. In Chapter 2, we are concerned with the study of fixed block configuration group divisible designs, GDD(n; m; k; λ1; λ2). We study those GDDs in which each block has configuration (s; t), that is, GDDs in which each block has exactly s points from one of the two groups and t points from the other. Chapter 2 begins with an overview of previous results and constructions for small group size and block sizes 3, 4 and 5. Chapter 2 is largely devoted to presenting constructions and results about GDDs with two groups and block size 6. We show the necessary conditions are sufficient for the existence of GDD(n, 2, 6; λ1, λ2) with fixed block configuration (3; 3). For configuration (1; 5), we give minimal or nearminimal index constructions for all group sizes n ≥ 5 except n = 10, 15, 160, or 190. For configuration (2, 4), we provide constructions for several families ofGDD(n, 2, 6; λ1, λ2)s. Chapter 3 addresses characterizing (3, r)-regular graphs. We begin with providing previous results on the well studied class of (2, r)-regular graphs and some results on the structure of large (t; r)-regular graphs. In Chapter 3, we completely characterize all (3, 1)-regular and (3, 2)-regular graphs, as well has sharpen existing bounds on the order of large (3, r)- regular graphs of a certain form for r ≥ 3. Finally, the appendix gives computational data resulting from Sage and C programs used to generate (3, 3)-regular graphs on less than 10 vertices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Target localization has a wide range of military and civilian applications in wireless mobile networks. Examples include battle-field surveillance, emergency 911 (E911), traffc alert, habitat monitoring, resource allocation, routing, and disaster mitigation. Basic localization techniques include time-of-arrival (TOA), direction-of-arrival (DOA) and received-signal strength (RSS) estimation. Techniques that are proposed based on TOA and DOA are very sensitive to the availability of Line-of-sight (LOS) which is the direct path between the transmitter and the receiver. If LOS is not available, TOA and DOA estimation errors create a large localization error. In order to reduce NLOS localization error, NLOS identifcation, mitigation, and localization techniques have been proposed. This research investigates NLOS identifcation for multiple antennas radio systems. The techniques proposed in the literature mainly use one antenna element to enable NLOS identifcation. When a single antenna is utilized, limited features of the wireless channel can be exploited to identify NLOS situations. However, in DOA-based wireless localization systems, multiple antenna elements are available. In addition, multiple antenna technology has been adopted in many widely used wireless systems such as wireless LAN 802.11n and WiMAX 802.16e which are good candidates for localization based services. In this work, the potential of spatial channel information for high performance NLOS identifcation is investigated. Considering narrowband multiple antenna wireless systems, two xvNLOS identifcation techniques are proposed. Here, the implementation of spatial correlation of channel coeffcients across antenna elements as a metric for NLOS identifcation is proposed. In order to obtain the spatial correlation, a new multi-input multi-output (MIMO) channel model based on rough surface theory is proposed. This model can be used to compute the spatial correlation between the antenna pair separated by any distance. In addition, a new NLOS identifcation technique that exploits the statistics of phase difference across two antenna elements is proposed. This technique assumes the phases received across two antenna elements are uncorrelated. This assumption is validated based on the well-known circular and elliptic scattering models. Next, it is proved that the channel Rician K-factor is a function of the phase difference variance. Exploiting Rician K-factor, techniques to identify NLOS scenarios are proposed. Considering wideband multiple antenna wireless systems which use MIMO-orthogonal frequency division multiplexing (OFDM) signaling, space-time-frequency channel correlation is exploited to attain NLOS identifcation in time-varying, frequency-selective and spaceselective radio channels. Novel NLOS identi?cation measures based on space, time and frequency channel correlation are proposed and their performances are evaluated. These measures represent a better NLOS identifcation performance compared to those that only use space, time or frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated annular field reversed configuration (AFRC)devices for high power electric propulsion by demonstrating the acceleration of these plasmoids using an experimental prototype and measuring the plasmoid's velocity, impulse, and energy efficiency. The AFRC plasmoid translation experiment was design and constructed with the aid of a dynamic circuit model. Two versions of the experiment were built, using underdamped RLC circuits at 10 kHz and 20 kHz. Input energies were varied from 100 J/pulse to 1000 J/pulse for the 10 kHz bank and 100 J/pulse for the 20 kHz bank. The plasmoids were formed in static gas fill of argon, from 1 mTorr to 50 mTorr. The translation of the plasmoid was accomplished by incorporating a small taper into the outer coil, with a half angle of 2°. Magnetic field diagnostics, plasma probes, and single-frame imaging were used to measure the plasmoid's velocity and to diagnose plasmoid behavior. Full details of the device design, construction, and diagnostics are provided in this dissertation. The results from the experiment demonstrated that a repeatable AFRC plasmoid was produced between the coils, yet failed to translate for all tested conditions. The data revealed the plasmoid was limited in lifetime to only a few (4-10) μs, too short for translation at low energy. A global stability study showed that the plasma suffered a radial collapse onto the inner wall early in its lifecycle. The radial collapse was traced to a magnetic pressure imbalance. A correction made to the circuit was successful in restoring an equilibrium pressure balance and prolonging radial stability by an additional 2.5 μs. The equilibrium state was sufficient to confirm that the plasmoid current in an AFRC reaches a steady-state prior to the peak of the coil currents. This implies that the plasmoid will always be driven to the inner wall, unless it translates from the coils prior to peak coil currents. However, ejection of the plasmoid before the peak coil currents results in severe efficiency losses. These results demonstrate the difficulty in designing an AFRC experiment for translation as balancing the different requirements for stability, balance, and efficient translation can have competing consequences.