3 resultados para anistropic growth constitutive equations mixture theory poroelasticity rational thermodynamics

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of advanced materials aimed at improving human life has been performed since time immemorial. Such studies have created everlasting and greatly revered monuments and have helped revolutionize transportation by ushering the age of lighter–than–air flying machines. Hence a study of the mechanical behavior of advanced materials can pave way for their use for mankind’s benefit. In this school of thought, the aim of this dissertation is to broadly perform two investigations. First, an efficient modeling approach is established to predict the elastic response of cellular materials with distributions of cell geometries. Cellular materials find important applications in structural engineering. The approach does not require complex and time-consuming computational techniques usually associated with modeling such materials. Unlike most current analytical techniques, the modeling approach directly accounts for the cellular material microstructure. The approach combines micropolar elasticity theory and elastic mixture theory to predict the elastic response of cellular materials. The modeling approach is applied to the two dimensional balsa wood material. Predicted properties are in good agreement with experimentally determined properties, which emphasizes the model’s potential to predict the elastic response of other cellular solids, such as open cell and closed cell foams. The second topic concerns intraneural ganglion cysts which are a set of medical conditions that result in denervation of the muscles innervated by the cystic nerve leading to pain and loss of function. Current treatment approaches only temporarily alleviate pain and denervation which, however, does not prevent cyst recurrence. Hence, a mechanistic understanding of the pathogenesis of intraneural ganglion cysts can help clinicians understand them better and therefore devise more effective treatment options. In this study, an analysis methodology using finite element analysis is established to investigate the pathogenesis of intraneural ganglion cysts. Using this methodology, the propagation of these cysts is analyzed in their most common site of occurrence in the human body i.e. the common peroneal nerve. Results obtained using finite element analysis show good correlation with clinical imaging patterns thereby validating the promise of the method to study cyst pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual life history theory is largely focused on understanding the extent to which various phenotypes of an organism are adaptive and whether they represent life history trade-offs. Compensatory growth (CG) is increasingly appreciated as a phenotype of interest to evolutionary ecologists. CG or catch-up growth involves the ability of an organism to grow at a faster-than-normal rate following periods of under-nutrition once conditions subsequently improve. Here, I examine CG in a population of moose (Alces alces) living on Isle Royale, a remote island in Lake Superior, North America. I gained insights about CG from measurements of skeletal remains of 841 moose born throughout a 52-year period. In particular, I compared the length of the metatarsal bone (ML) with several skull measurements. While ML is an index of growth while the moose is in utero and during the first year or two of life, a moose skull continues to grow until a moose is approximately 5 years of age. Because of these differences, the strength of correlation between ML and skull measurements, for a group of moose (say female moose) is an indication of that group’s capacity for CG. Using this logic, I conducted analyses whose results suggest that the capacity for CG did not differ between sexes, between individuals born during periods of high and low population densities, or between individuals exhibiting signs of senescence and those that do not. The analysis did however suggest that long-lived individuals had a greater capacity for CG than short-lived individuals. These results suggest that CG in moose is an adaptive trait and might not be associated with life history trade-offs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation represents experimental and numerical investigations of combustion initiation trigged by electrical-discharge-induced plasma within lean and dilute methane air mixture. This research topic is of interest due to its potential to further promote the understanding and prediction of spark ignition quality in high efficiency gasoline engines, which operate with lean and dilute fuel-air mixture. It is specified in this dissertation that the plasma to flame transition is the key process during the spark ignition event, yet it is also the most complicated and least understood procedure. Therefore the investigation is focused on the overlapped periods when plasma and flame both exists in the system. Experimental study is divided into two parts. Experiments in Part I focuses on the flame kernel resulting from the electrical discharge. A number of external factors are found to affect the growth of the flame kernel, resulting in complex correlations between discharge and flame kernel. Heat loss from the flame kernel to code ambient is found to be a dominant factor that quenches the flame kernel. Another experimental focus is on the plasma channel. Electrical discharges into gases induce intense and highly transient plasma. Detailed observation of the size and contents of the discharge-induced plasma channel is performed. Given the complex correlation and the multi-discipline physical/chemical processes involved in the plasma-flame transition, the modeling principle is taken to reproduce detailed transitions numerically with minimum analytical assumptions. Detailed measurement obtained from experimental work facilitates the more accurate description of initial reaction conditions. The novel and unique spark source considering both energy and species deposition is defined in a justified manner, which is the key feature of this Ignition by Plasma (IBP) model. The results of numerical simulation are intuitive and the potential of numerical simulation to better resolve the complex spark ignition mechanism is presented. Meanwhile, imperfections of the IBP model and numerical simulation have been specified and will address future attentions.