2 resultados para alternative lease structures

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional transportation fuel, petroleum, is limited and nonrenewable, and it also causes pollutions. Hydrogen is considered one of the best alternative fuels for transportation. The key issue for using hydrogen as fuel for transportation is hydrogen storage. Lithium nitride (Li3N) is an important material which can be used for hydrogen storage. The decompositions of lithium amide (LiNH2) and lithium imide (Li2NH) are important steps for hydrogen storage in Li3N. The effect of anions (e.g. Cl-) on the decomposition of LiNH2 has never been studied. Li3N can react with LiBr to form lithium nitride bromide Li13N4Br which has been proposed as solid electrolyte for batteries. The decompositions of LiNH2 and Li2NH with and without promoter were investigated by using temperature programmed decomposition (TPD) and X-ray diffraction (XRD) techniques. It was found that the decomposition of LiNH2 produced Li2NH and NH3 via two steps: LiNH2 into a stable intermediate species (Li1.5NH1.5) and then into Li2NH. The decomposition of Li2NH produced Li, N2 and H2 via two steps: Li2NH into an intermediate species --- Li4NH and then into Li. The kinetic analysis of Li2NH decomposition showed that the activation energies are 533.6 kJ/mol for the first step and 754.2 kJ/mol for the second step. Furthermore, XRD demonstrated that the Li4NH, which was generated in the decomposition of Li2NH, formed a solid solution with Li2NH. In the solid solution, Li4NH possesses a similar cubic structure as Li2NH. The lattice parameter of the cubic Li4NH is 0.5033nm. The decompositions of LiNH2 and Li2NH can be promoted by chloride ion (Cl-). The introduction of Cl- into LiNH2 resulted in the generation of a new NH3 peak at low temperature of 250 °C besides the original NH3 peak at 330 °C in TPD profiles. Furthermore, Cl- can decrease the decomposition temperature of Li2NH by about 110 °C. The degradation of Li3N was systematically investigated with techniques of XRD, Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. It was found that O2 could not affect Li3N at room temperature. However, H2O in air can cause the degradation of Li3N due to the reaction between H2O and Li3N to LiOH. The produced LiOH can further react with CO2 in air to Li2CO3 at room temperature. Furthermore, it was revealed that Alfa-Li3N is more stable in air than Beta-Li3N. The chemical stability of Li13N4Br in air has been investigated by XRD, TPD-MS, and UV-vis absorption as a function of time. The aging process finally leads to the degradation of the Li13N4Br into Li2CO3, lithium bromite (LiBrO2) and the release of gaseous NH3. The reaction order n = 2.43 is the best fitting for the Li13N4Br degradation in air reaction. Li13N4Br energy gap was calculated to be 2.61 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within academic institutions, writing centers are uniquely situated, socially rich sites for exploring learning and literacy. I examine the work of the Michigan Tech Writing Center's UN 1002 World Cultures study teams primarily because student participants and Writing Center coaches are actively engaged in structuring their own learning and meaning-making processes. My research reveals that learning is closely linked to identity formation and leading the teams is an important component of the coaches' educational experiences. I argue that supporting this type of learning requires an expanded understanding of literacy and significant changes to how learning environments are conceptualized and developed. This ethnographic study draws on data collected from recordings and observations of one semester of team sessions, my own experiences as a team coach and UN 1002 teaching assistant, and interviews with Center coaches prior to their graduation. I argue that traditional forms of assessment and analysis emerging from individualized instruction models of learning cannot fully account for the dense configurations of social interactions identified in the Center's program. Instead, I view the Center as an open system and employ social theories of learning and literacy to uncover how the negotiation of meaning in one context influences and is influenced by structures and interactions within as well as beyond its boundaries. I focus on the program design, its enaction in practice, and how engagement in this type of writing center work influences coaches' learning trajectories. I conclude that, viewed as participation in a community of practice, the learning theory informing the program design supports identity formation —a key aspect of learning as argued by Etienne Wenger (1998). The findings of this study challenge misconceptions of peer learning both in writing centers and higher education that relegate peer tutoring to the role of support for individualized models of learning. Instead, this dissertation calls for consideration of new designs that incorporate peer learning as an integral component. Designing learning contexts that cultivate and support the formation of new identities is complex, involves a flexible and opportunistic design structure, and requires the availability of multiple forms of participation and connections across contexts.