2 resultados para abuse of drugs

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Viral infections account for over 13 million deaths per year. Antiviral drugs and vaccines are the most effective method to treat viral diseases. Antiviral compounds have revolutionized the treatment of AIDS, and reduced the mortality rate. However, this disease still causes a large number of deaths in developing countries that lack these types of drugs. Vaccination is the most effective method to treat viral disease; vaccines prevent around 2.5 million deaths per year. Vaccines are not able to offer full coverage due to high operational costs in the manufacturing processes. Although vaccines have saved millions of lives, conventional vaccines often offer reactogenic effects. New technologies have been created to eliminate the undesired side effects. However, new vaccines are less immunogenic and adjuvants such as vaccine delivery vehicles are required. This work focuses on the discovery of new natural antivirals that can reduce the high cost and side effects of synthetic drugs. We discovered that two osmolytes, trimethylamine N-oxide (TMAO) and glycine reduce the infectivity of a model virus, porcine parvovirus (PPV), by 4 LRV (99.99%), likely by disruption of capsid assembly. These osmolytes have the potential to be used as drugs, since they showed antiviral activity after 20 h. We have also focused on improving current vaccine manufacturing processes that will allow fast, effective and economical vaccines to be produced worldwide. We propose virus flocculation in osmolytes followed by microfiltration as an economical alternative for vaccine manufacturing. Osmolytes are able to specifically flocculate hydrophobic virus particles by depleting a hydration layer around the particles and subsequently cause virus aggregation. The osmolyte mannitol was able to flocculate virus particles, and demonstrate a high virus removal, 81% for PPV and 98.1% for Sindbis virus (SVHR). Virus flocculation with mannitol, followed by microfiltration could be used as a platform process for virus purification. Finally, we perform biocompatibility studies on soft-templated mesoporous carbon materials with the aim of using these materials as vaccine delivery vehicles. We discovered that these materials are biocompatible, and the degree of biocompatibility is within the range of other biomaterials currently employed in biomedical applications.