3 resultados para Zone rurale
em Digital Commons - Michigan Tech
Resumo:
The flammability zone boundaries are very important properties to prevent explosions in the process industries. Within the boundaries, a flame or explosion can occur so it is important to understand these boundaries to prevent fires and explosions. Very little work has been reported in the literature to model the flammability zone boundaries. Two boundaries are defined and studied: the upper flammability zone boundary and the lower flammability zone boundary. Three methods are presented to predict the upper and lower flammability zone boundaries: The linear model The extended linear model, and An empirical model The linear model is a thermodynamic model that uses the upper flammability limit (UFL) and lower flammability limit (LFL) to calculate two adiabatic flame temperatures. When the proper assumptions are applied, the linear model can be reduced to the well-known equation yLOC = zyLFL for estimation of the limiting oxygen concentration. The extended linear model attempts to account for the changes in the reactions along the UFL boundary. Finally, the empirical method fits the boundaries with linear equations between the UFL or LFL and the intercept with the oxygen axis. xx Comparison of the models to experimental data of the flammability zone shows that the best model for estimating the flammability zone boundaries is the empirical method. It is shown that is fits the limiting oxygen concentration (LOC), upper oxygen limit (UOL), and the lower oxygen limit (LOL) quite well. The regression coefficient values for the fits to the LOC, UOL, and LOL are 0.672, 0.968, and 0.959, respectively. This is better than the fit of the "zyLFL" method for the LOC in which the regression coefficient’s value is 0.416.
Resumo:
Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.
Resumo:
Understanding the geometry and kinematics of the major structures of an orogen is important to elucidate its style of deformation, as well as its tectonic evolution. We describe the temporal and spatial changes in the state of stress of the trans-orogen area of the Calama-Olacapato-El Toro (COT) Fault Zone in the Central Andes, at about 24°S within the northern portion of the Puna Plateau between the Argentina-Chile border. The importance of the COT derives principally from the Quaternary-Holocene activity recognized on some segments, which may shed new light on its possible control on Quaternary volcanism and on the seismic hazard evaluation of the area. Field geological surveys along with kinematic analysis and numerical inversion of ∼140 new fault-slip measurements have revealed that this portion of the COT zone, previously considered a continuous, long-lived lineament, in reality has been subjected to three different kinematic regimes: 1) a Miocene transpressional phase with the maximum principal stress (σ1) chiefly trending NNE-SSW; 2) an extensional phase that started by 9 Ma, with a horizontal NW-SE-striking minimum principal stress (σ3) – permutations between σ2 and σ3 axes have been recognized at two sites – and 3) a left-lateral strike-slip phase with a horizontal ∼E-W &sigma1 and ∼N-S σ3 dating to the Late Pliocene-Quaternary. Spatially, in the Quaternary, the left-lateral component decreases toward the westernmost tip of the COT, where it transitions to extension; this produced to a N-S horst and graben structure. Hence, even if transcurrence is still active in the eastern portion of the COT, as focal mechanisms of crustal earthquakes indicate, our study demonstrates that extension is becoming the predominant structural style of deformation, at least in the western region. These major temporal and spatial changes in the tectonic regimes are attributed in part to changes in the magnitude of the boundary forces due to subduction processes. The overall orogen-perpendicular extension might be the result of vertical stress larger than both the horizontal stresses induced by gravitational effect of a thickened crust.