2 resultados para Wooden-frame houses
em Digital Commons - Michigan Tech
Resumo:
Light-frame wood buildings are widely built in the United States (U.S.). Natural hazards cause huge losses to light-frame wood construction. This study proposes methodologies and a framework to evaluate the performance and risk of light-frame wood construction. Performance-based engineering (PBE) aims to ensure that a building achieves the desired performance objectives when subjected to hazard loads. In this study, the collapse risk of a typical one-story light-frame wood building is determined using the Incremental Dynamic Analysis method. The collapse risks of buildings at four sites in the Eastern, Western, and Central regions of U.S. are evaluated. Various sources of uncertainties are considered in the collapse risk assessment so that the influence of uncertainties on the collapse risk of lightframe wood construction is evaluated. The collapse risks of the same building subjected to maximum considered earthquakes at different seismic zones are found to be non-uniform. In certain areas in the U.S., the snow accumulation is significant and causes huge economic losses and threatens life safety. Limited study has been performed to investigate the snow hazard when combined with a seismic hazard. A Filtered Poisson Process (FPP) model is developed in this study, overcoming the shortcomings of the typically used Bernoulli model. The FPP model is validated by comparing the simulation results to weather records obtained from the National Climatic Data Center. The FPP model is applied in the proposed framework to assess the risk of a light-frame wood building subjected to combined snow and earthquake loads. The snow accumulation has a significant influence on the seismic losses of the building. The Bernoulli snow model underestimates the seismic loss of buildings in areas with snow accumulation. An object-oriented framework is proposed in this study to performrisk assessment for lightframe wood construction. For home owners and stake holders, risks in terms of economic losses is much easier to understand than engineering parameters (e.g., inter story drift). The proposed framework is used in two applications. One is to assess the loss of the building subjected to mainshock-aftershock sequences. Aftershock and downtime costs are found to be important factors in the assessment of seismic losses. The framework is also applied to a wood building in the state of Washington to assess the loss of the building subjected to combined earthquake and snow loads. The proposed framework is proven to be an appropriate tool for risk assessment of buildings subjected to multiple hazards. Limitations and future works are also identified.
Resumo:
Michigan copper mining companies owned and rented more than 3,000 houses along the Keweenaw Peninsula at the time of the 1913-14 copper strike. The provision of company-constructed housing in mining districts has drawn a wide range of inquiry. Mining historians, community planners, architectural historians, and academics interested in the immigrant experience have identified miners' housing as intriguing examples of corporate paternalism, social planning, vernacular adaptation and ethnic segregation. Michigan's Copper Country retains many examples of such housing and recent research has shown that the Michigan copper mining companies championed the use of housing as a non-wage employment benefit. This paper will investigate the increasingly important role of occupancy and control of company housing during the strike. Illustrated with images collected during the strike by the fledgling U.S. Department of Labor, the presentation explores the history of company housing in the Copper Country, its part in a larger system of corporate welfare, and how the threat of evictions may have turned the tide of strike.