13 resultados para Wisconsin
em Digital Commons - Michigan Tech
Resumo:
Between 1966 and 2003, the Golden-winged Warbler (Vermivora chrysoptera) experienced declines of 3.4% per year in large parts of the breeding range and has been identified by Partners in Flight as one of 28 land birds requiring expedient action to prevent its continued decline. It is currently being considered for listing under the Endangered Species Act. A major step in advancing our understanding of the status and habitat preferences of Golden-winged Warbler populations in the Upper Midwest was initiated by the publication of new predictive spatially explicit Golden-winged Warbler habitat models for the northern Midwest. Here, I use original data on observed Golden-winged Warbler abundances in Wisconsin and Minnesota to compare two population models: the hierarchical spatial count (HSC) model with the Habitat Suitability Index (HSI) model. I assessed how well the field data compared to the model predictions and found that within Wisconsin, the HSC model performed slightly better than the HSI model whereas both models performed relatively equally in Minnesota. For the HSC model, I found a 10% error of commission in Wisconsin and a 24.2% error of commission for Minnesota. Similarly, the HSI model has a 23% error of commission in Minnesota; in Wisconsin due to limited areas where the HSI model predicted absences, there was incomplete data and I was unable to determine the error of commission for the HSI model. These are sites where the model predicted presences and the Golden-winged Warbler did not occur. To compare predicted abundance from the two models, a 3x3 contingency table was used. I found that when overlapped, the models do not complement one another in identifying Golden-winged Warbler presences. To calculate discrepancy between the models, the error of commission shows that the HSI model has only a 6.8% chance of correctly classifying absences in the HSC model. The HSC model has only 3.3% chance of correctly classifying absences in the HSI model. These findings highlight the importance of grasses for nesting, shrubs used for cover and foraging, and trees for song perches and foraging as key habitat characteristics for breeding territory occupancy by singing males.
Resumo:
Today sustainable development is a very pertinent issue. Communities do not want companies, specifically mining companies, to deplete a natural resource and leave. The goal is to minimize the negative impacts of mining and the boom/bust cycles of natural resource extraction. In this study a three part framework was developed to analyze the sustainability of the Flambeau Mine in Ladysmith, Wisconsin. The first and second part dealt with an in-depth local and regional analysis and whether the community was developing within its own vision. The third part used nine sustainability measures including: 1. Need Present Generation 2. Future Need 3. Acceptable Legacy 4. Full-Cost 5. Contribution to Economic Development 6. Equity 7. Consent 8. Respect for Ecological Limits, Maintenance of Ecological Integrity and Landscape Requirements 9. Offsetting Restoration This study concluded that the Flambeau Mine was sustainable relative to the first two criteria and that it can be considered mostly sustainable relative to the nine criteria. Overall it can be stated that the Flambeau Mine was a beneficial project to the Ladysmith Wisconsin area. Additionally it appeared to decrease the public’s negative perception of mining. Recommendations for future analytical work are made. Suggestions are made as to how mining companies could increase the potential for the attainment of sustainability in projects. It is recommended that this framework be used by other industries.
Resumo:
Housing development has increased dramatically in the Midwest with a high concentration around lakes. This development plays an important role in the economy of Northwoods communities. However, poorly planned development has the potential to alter a lake’s ecological processes and integrity. Studies have documented the impacts of housing developments and reported dramatic, negative changes to the flora and fauna in Vilas County, Wisconsin. One component of my research included examining the previously unstudied effects of residential development on the abundance and diversity of medium to large-bodied mammals using lakeshore ecosystems. The results suggest that a higher diversity of mammals were detected on low-development lakes. Coyotes were the most numerous species detected with the majority encountered on low-development lakes. White-tailed deer and red fox were more abundant on high-development lakes as compared to low-development lakes. I concluded that high-development lakes are having a negative affect on the mammal community in this area. Recently, lakeshore restoration has occurred on privately owned property in Vilas County and elsewhere in the Northwoods, but little is known about the benefit, if any, from these restoration efforts. A partnership between government agencies and academia has launched a long-term research project investigating the ecological benefits of lakeshore restoration. I investigated the impacts of using down woody material (DWM) to increase the success of restoration projects. Specifically, I tested the hypothesis that down woody material would reduce the variation in soil temperature, retain soil moisture, and improve plant survival and growth rates. I randomly assigned three DWM coverage treatments (0%, 25%, and 50%) on 3 m × 3 m experimental plots (n = 10 per treatment). The mean maximum soil temperature, temperature variation, and change in soil moisture content were significantly lower in the 25% and 50% DWM plots. I found no difference in survival, but snowberry (Symphoricarpos albus) and Barren strawberry (Waldstenia fragaroides) growth was significant greater in the 25% and 50% DWM plots. DWM addition can be considered a useful technique to physically manipulate soil properties and improve plant growth. Finally, I provided baseline data on vegetation structure, bird and small mammal community diversity and abundance for three lakes targeted for restoration efforts and their paired reference lakes. This study is one of the first of it kind in the area and continuing to document the degree of change in subsequent years will provide insight into the way the local ecosystem functions and how ecological communities are structured.
Resumo:
There has been a continuous evolutionary process in asphalt pavement design. In the beginning it was crude and based on past experience. Through research, empirical methods were developed based on materials response to specific loading at the AASHO Road Test. Today, pavement design has progressed to a mechanistic-empirical method. This methodology takes into account the mechanical properties of the individual layers and uses empirical relationships to relate them to performance. The mechanical tests that are used as part of this methodology include dynamic modulus and flow number, which have been shown to correlate with field pavement performance. This thesis was based on a portion of a research project being conducted at Michigan Technological University (MTU) for the Wisconsin Department of Transportation (WisDOT). The global scope of this project dealt with the development of a library of values as they pertain to the mechanical properties of the asphalt pavement mixtures paved in Wisconsin. Additionally, a comparison with the current associated pavement design to that of the new AASHTO Design Guide was conducted. This thesis describes the development of the current pavement design methodology as well as the associated tests as part of a literature review. This report also details the materials that were sampled from field operations around the state of Wisconsin and their testing preparation and procedures. Testing was conducted on available round robin and three Wisconsin mixtures and the main results of the research were: The test history of the Superpave SPT (fatigue and permanent deformation dynamic modulus) does not affect the mean response for both dynamic modulus and flow number, but does increase the variability in the test results of the flow number. The method of specimen preparation, compacting to test geometry versus sawing/coring to test geometry, does not statistically appear to affect the intermediate and high temperature dynamic modulus and flow number test results. The 2002 AASHTO Design Guide simulations support the findings of the statistical analyses that the method of specimen preparation did not impact the performance of the HMA as a structural layer as predicted by the Design Guide software. The methodologies for determining the temperature-viscosity relationship as stipulated by Witczak are sensitive to the viscosity test temperatures employed. The increase in asphalt binder content by 0.3% was found to actually increase the dynamic modulus at the intermediate and high test temperature as well as flow number. This result was based the testing that was conducted and was contradictory to previous research and the hypothesis that was put forth for this thesis. This result should be used with caution and requires further review. Based on the limited results presented herein, the asphalt binder grade appears to have a greater impact on performance in the Superpave SPT than aggregate angularity. Dynamic modulus and flow number was shown to increase with traffic level (requiring an increase in aggregate angularity) and with a decrease in air voids and confirm the hypotheses regarding these two factors. Accumulated micro-strain at flow number as opposed to the use of flow number appeared to be a promising measure for comparing the quality of specimens within a specific mixture. At the current time the Design Guide and its associate software needs to be further improved prior to implementation by owner/agencies.
Resumo:
The federally endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov) persists in rare oak/pine grassland communities spanning across the Great Lakes region, relying on host plant wild blue lupine (Lupinus perennis). Conservation efforts since 1992 have led to the development of several programs that restore and monitor habitat. This study aims to evaluate Karner blue habitat selection in the state of Wisconsin and develop high-resolution tools for use in conservation efforts. Spatial predictive models developed during this study accurately predicted potential habitat across state properties based on soils and canopy cover, and identified ~51-100% of Karner blue occurrences based on lupine and shrub/tree cover, and focal nectar plant abundance. When evaluated relative to American bison (Bison bison), Karner blues and lupine were more likely to occur in areas of low disturbance, but aggregated where bison were recently present in areas of moderate/high disturbance. Lupine C:N ratio increased relative to cover of shrubs/trees and focal nectar plant abundance and decreased relative to cover of groundlitter. Karner blue density increased with lupine C:N ratio, decreased with nitrogen content, and was not related to phenolic levels. We strongly suggest that areas of different soil textures must be managed differently and that maintenance techniques should generate a mix of shrubs/tree cover (10-45%), groundlitter cover (~10-40%), >5% cover of lupine, and establish an abundance of focal nectar plants. This study provides unique tools for use in conservation and should aid in focusing management efforts and recovery of this species.
Resumo:
Farm protest in the United States attracted widespread attention in the 1930s as militant farmers interfered with foreclosure sales, demonstrated at county court houses and state capitals, and blocked highways and stopped trains to prevent crops and livestock from going to market in an effort to raise farm prices. The best known of the protest groups was the Farmers Holiday Association, which was formed in 1932. Prior to the Holiday, however, a left-wing group organized by Communists in 1930 known as the United Farmers League (UFL) gained an initial following in the cutover country of the Upper Peninsula of Michigan, northern Wisconsin, northern Minnesota, and parts of the Dakotas and northeast Montana. Finnish Americans dominated the UFL in the Upper Midwest and in a few locales in the Dakotas. Evidence for this high level of influence comes from the fact that the head of the Communist Party’s Agrarian Department was Henry Puro, a key figure in Finnish American Communist circles and a member of the Party’s Politburo. This paper will focus on Finnish American involvement in the UFL and, to a lesser extent, the broader-based Farmers Holiday movement.
Resumo:
The Copper County Strike of 1913 was heroic, tragic, and large in meaning, both for those who lived in it and for those haunted by it in the years that followed. Carl Ross was born in Hancock only hours before the strike erupted. His father was a printer for Työmies. I had the good fortune to meet Carl and work with him for some twenty years. Carl spoke often of the strike—of what it meant for him, his family, and the radical Finnish community in Superior, Wisconsin, where he grew up. I had never heard of the Copper Country strike before I met Carl, but what I heard about that strike resonated with some of my own experiences. I grew up in New Castle, Indiana, a town that left-wing journalist I.F. Stone called a “labor citadel” in the midst of hostile territory. I want to use these two recollections, Carl’s 1913 Strike reminiscences and my memories of New Castle, to talk about how some strikes carry a moral vision of enormous importance. The presentation will have three parts. In the first part I will relate a little of what Carl had to say about the Copper Country Strike. In the second part I will talk about strikes of my own experience. In the final part, I will talk about the differences in the structures of labor movements and the ethical implications of those differences.
Resumo:
The research presented in this thesis was conducted to further the development of the stress wave method of nondestructively assessing the quality of wood in standing trees. The specific objective of this research was to examine, in the field, use of two stress wave nondestructive assessment techniques. The first technique examined utilizes a laboratory-built measurement system consisting of commercially available accelerometers and a digital storage oscilloscope. The second technique uses a commercially available tool that incorporates several technologies to determine speed of stress wave propagation in standing trees. Field measurements using both techniques were conducted on sixty red pine trees in south-central Wisconsin and 115 ponderosa pine trees in western Idaho. After in-situ measurements were taken, thirty tested red pine trees were felled and a 15-foot-long butt log was obtained from each tree, while all tested ponderosa pine trees were felled and an 8 1/2 -foot-long butt log was obtained, respectively. The butt logs were sent to the USDA Forest Products Laboratory and nondestructively tested using a resonance stress wave technique. Strong correlative relationships were observed between stress wave values obtained from both field measurement techniques. Excellent relationships were also observed between standing tree and log speed-of-sound values.
Resumo:
Green-tree retention under the conceptual framework of ecological forestry has the potential to provide both biomass feedstock for industry and maintain quality wildlife habitat. I examined the effects of retained canopy trees as biological legacies (“legacy trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in each of three legacy tree retention treatments (conifer retention, hardwood retention, and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). Conifer retention stands had greater legacy tree and all tree species biomass but lower regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the understory plant assemblage by estimating the mean coefficient of conservatism (C). Mean C was lower in young stands than in middle-age or old stands; there was a marginally significant (p=0.058) interaction effect between legacy tree retention treatment and stand age. Late-seral plant species were positively associated with stand age and legacy tree diameter or age revealing an important relationship between legacy tree retention and stand development. Bird species richness was greatest in stands with hardwood retention particularly early in stand development. Six conservation priority bird species were indicators of legacy tree retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality nest habitat for the Golden-winged Warbler than clearcuts based on high pairing success and nesting activity. Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most consistent positive effects in this study with the highest bird species richness and the highest quality habitat for the Golden-winged Warbler. This treatment maintained stand biomass comparable to clearcuts and did not suppress regenerating tree biomass. In conclusion, legacy tree retention can enhance even-aged management techniques to produce a win-win scenario for the conservation of declining bird species and late-seral understory plants and for production of woody biomass feedstock from naturally regenerating aspen forests.
Resumo:
The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.
Resumo:
Biofuels are alternative fuels that have the promise of reducing reliance on imported fossil fuels and decreasing emission of greenhouse gases from energy consumption. This thesis analyses the environmental impacts focusing on the greenhouse gas (GHG) emissions associated with the production and delivery of biofuel using the new Integrated Hydropyrolysis and Hydroconversion (IH2) process. The IH2 process is an innovative process for the conversion of woody biomass into hydrocarbon liquid transportation fuels in the range of gasoline and diesel. A cradle-to-grave life cycle assessment (LCA) was used to calculate the greenhouse gas emissions associated with diverse feedstocks production systems and delivery to the IH2 facility plus producing and using these new renewable liquid fuels. The biomass feedstocks analyzed include algae (microalgae), bagasse from a sugar cane-producing locations such as Brazil or extreme southern US, corn stover from Midwest US locations, and forest feedstocks from a northern Wisconsin location. The life cycle greenhouse gas (GHG) emissions savings of 58%–98% were calculated for IH2 gasoline and diesel production and combustion use in vehicles compared to fossil fuels. The range of savings is due to different biomass feedstocks and transportation modes and distances. Different scenarios were conducted to understand the uncertainties in certain input data to the LCA model, particularly in the feedstock production section, the IH2 biofuel production section, and transportation sections.
Resumo:
While the 1913-1914 copper country miners’ strike undoubtedly plays an important role in the identity of the Keweenaw Peninsula, it is worth noting that the model of mining corporations employing large numbers of laborers was not a foregone conclusion in the history of American mining. Between 1807 and 1847, public mineral lands in Missouri, in the Upper Mississippi Valley, and along the southern shore of Lake Superior were reserved from sale and subject to administration by the nation’s executive branch. By decree of the federal government, miners in these regions were lessees, not landowners. Yet, in the Wisconsin lead region especially, federal authorities reserved for independent “diggers” the right to prospect virtually unencumbered. In doing so, they preserved a comparatively egalitarian system in which the ability to operate was determined as much by luck as by financial resources. A series of revolts against federal authority in the early nineteenth century gradually encouraged officers in Washington to build a system in the copper country in which only wealthy investors could marshal the resources to both obtain permits and actually commence mining operations. This paper will therefore explore the role of the federal government in establishing a leasing system for public mineral lands in the years previous to the California Gold Rush, highlighting the development of corporate mining which ultimately set a stage for the wave of miners’ strikes in the late nineteenth and early twentieth centuries.
Resumo:
Acer saccharum Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as being the predisposing and inciting factors in different regions at different times. Some of the most common factors attributed to previous maple dieback episodes were insect defoliation outbreaks, inadequate precipitation, poor soils, atmospheric deposition, fungal pathogens, poor management, or a combination of these. The current sugar maple dieback was evaluated to determine the etiology, severity, and change in dieback on both industry and public lands. A network of 120 sugar maple health evaluation plots was established in the Upper Peninsula, Michigan, northern Wisconsin, and eastern Minnesota and evaluated annually from 2009-2012. Mean sugar maple crown dieback between 2009-2012 was 12.4% (ranging from 0.8-75.5%) across the region. Overall, during the sampling period, mean dieback decreased by 5% but individual plots and trees continued to decline. Relationships were examined between sugar maple dieback and growth, habitat conditions, ownership, climate, soil, foliage nutrients, and the maple pathogen sapstreak. The only statistically significant factor was found to be a high level of forest floor impacts due to exotic earthworm activity. Sugar maple on soils with lower pH had less earthworm impacts, less dieback, and higher growth rates than those on soils more favorable to earthworms. Nutritional status of foliage and soil was correlated with dieback and growth suggesting perturbation of nutrient cycling may be predisposing or contributing to dieback. The previous winter's snowfall totals, length of stay on the ground, and number of days with freezing temperatures had a significant positive relationship to sugar maple growth rates. Sapstreak disease, Ceratocystis virescens, may be contributing to dieback in some stands but was not related to the amount of dieback in the region. The ultimate goal of this research is to help forest managers in the Great Lakes Region prevent, anticipate, reduce, and/or salvage stands with dieback and loss in the future. An improved understanding of the complex etiology associated with sugar maple dieback in the Upper Great Lakes Region is necessary to make appropriate silvicultural decisions. Forest Health education helps increase awareness and proactive forest management in the face of changing forest ecosystems. Lessons are included to assist educators in incorporating forest health into standard biological disciplines at the secondary school curricula.