17 resultados para Well water
em Digital Commons - Michigan Tech
Resumo:
The goal of this project was to investigate the influence of a large inland lake on adjacent coastal freshwater peatlands. The specific aim was to determine the source of groundwater for three differently formed peatlands located on the southern shore of Lake Superior. The groundwater study was conducted at Bete Grise, a peatland complex in a dune-swale system; Pequaming, a peatland developed in the swale of a tombolo; and Lightfoot Bay, a peatland developed in a barrier beach wetland complex. To determine the source of groundwater in the peatlands, transects of six groundwater monitoring wells were established at each study site, covering distinctly different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored two vegetation zones: transition zone from upland and open fen. At Bete Grise, the transects monitored dunes and swales. Additionally, at all three sites, upland groundwater was monitored using three wells that were installed into the adjacent upland forest. Biweekly measurements of well water pH and specific conductance were carried out from May to October of 2010. At each site, vegetation cover, peat depths and surface elevations were determined and compared to Lake Superior water levels. From June 14 – 17, July 20 – 21 and September 10 – 12, stable isotopes of oxygen (18O/16O) ratios were measured in all the wells and for Lake Superior water. A mixing model was used to estimate the percentage of lake water influencing each site based on the oxygen isotope ratios. During the sampling period, groundwater at all three sites was supported primarily by upland groundwater. Pequaming was approximately 80 % upland groundwater supported and up to 20 % Lake water supported in the uppermost 1 m layer of peat column of the transition zone and open fen. Bete Grise and Lightfoot Bay were 100 % upland groundwater supported throughout the season. The height of Lake Superior was near typical levels in 2010. In years when the lake level is higher, Lake water could intrude into the adjacent peatlands. However, under typical hydrologic conditions, these coastal peatlands are primarily supported by upland groundwater.
Resumo:
The occurrence of elevated uranium (U) in sandstone aquifers was investigated in the Upper Peninsula of Michigan, focusing on aquifers of the Jacobsville Sandstone. The hydrogeochemical controls on groundwater U concentrations were characterized using a combination of water sampling and spectral gamma-ray logging of sandstone cliffs and residential water wells. 235U/238U isotope ratios were consistent with naturally occurring U. Approximately 25% of the 270 wells tested had U concentrations above the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 30 μg/L, with elevated U generally occurring in localized clusters. Water wells were logged to determine whether groundwater U anomalies could be explained by the heterogeneous distribution of U in the sandstone. Not all wells with relative U enrichment in the sandstone produced water with U above the MCL, indicating that the effect of U enrichment in the sandstone may be modified by other hydrogeochemical factors. Well water had high redox, indicating U is in its highly soluble (VI) valence. Equilibrium modeling indicated that aqueous U is complexed with carbonates. In general, wells with elevated U concentrations had low 235U/238U activity ratios. However, in some areas U concentrations and 235U/238U activity ratios were simultaneously high, possibly indicating differences in rock-water interactions. Limited groundwater age dating suggested that residence time may also help explain variations in well water U concentrations. Low levels of U enrichment (4 to 30 ppm) in the Jacobsville sandstone may make wells in its oxidized aquifers at risk for U concentrations above the MCL. On average, U concentrations were highest in heavy mineral and clay layers and rip up conglomerates. Uranium concentrations above 4 ppm also occurred in siltstones, sandstones and conglomerates. Uranium enrichment was likely controlled by deposition processes, sorption to clays, and groundwater flow, which was controlled by permeability variations in the sandstone. Low levels of U enrichment were found at deltaic, lacustrine and alluvial fan deposits and were not isolated to specific depositional environments.
Resumo:
The Environmental Health (EH) program of Peace Corps (PC) Panama and a non-governmental organization (NGO) Waterlines have been assisting rural communities in Panama gain access to improved water sources through the practice of community management (CM) model and participatory development. Unfortunately, there is little information available on how a water system is functioning once the construction is complete and the volunteer leaves the community. This is a concern when the recent literature suggests that most communities are not able to indefinitely maintain a rural water system (RWS) without some form of external assistance (Sara and Katz, 1997; Newman et al, 2002; Lockwood, 2002, 2003, 2004; IRC, 2003; Schweitzer, 2009). Recognizing this concern, the EH program director encouraged the author to complete a postproject assessment of the past EH water projects. In order to carry out the investigation, an easy to use monitoring and evaluation tool was developed based on literature review and the author’s three years of field experience in rural Panama. The study methodology consists of benchmark scoring systems to rate the following ten indicators: watershed, source capture, transmission line, storage tank, distribution system, system reliability, willingness to pay, accounting/transparency, maintenance, and active water committee members. The assessment of 28 communities across the country revealed that the current state of physical infrastructure, as well as the financial, managerial and technical capabilities of water committees varied significantly depending on the community. While some communities are enjoying continued service and their water committee completing all of its responsibilities, others have seen their water systems fall apart and be abandoned. Overall, the higher score were more prevalent for all ten indicators. However, even the communities with the highest scores requested some form of additional assistance. The conclusion from the assessment suggests that the EH program should incorporate an institutional support mechanism (ISM) to its sector policy in order to systematically provide follow-up support to rural communities in Panama. A full-time circuit rider with flexible funding would be able to provide additional technical support, training and encouragement to those communities in need.
Resumo:
For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages in the interior of Suriname have been the focus of many improved drinking water projects as most communities are without year-round access. Unfortunately, as many as 75% of the systems in Suriname fail within several years of implementation. These communities, scattered along the rivers and throughout the jungle, lack many of the resources required to sustain a centralized water treatment system. However, the centralized system in the village of Bendekonde on the Upper Suriname River has been operational for over 10 years and is often touted by other communities. The Bendekonde system is praised even though the technology does not differ significantly from other failed systems. Many of the water systems that fail in the interior fail due to a lack of resources available to the community to maintain the system. Typically, the more complex a system becomes, so does the demand for additional resources. Alternatives to centralized systems include technologies such as point-of-use water filters, which can greatly reduce the necessity for outside resources. In particular, ceramic point-of-use water filters offer a technology that can be reasonably managed in a low resource setting such as that in the interior of Suriname. This report investigates the appropriateness and effectiveness of ceramic filters constructed with local Suriname clay and compares the treatment effectiveness to that of the Bendekonde system. Results of this study showed that functional filters could be produced from Surinamese clay and that they were more effective, in a controlled laboratory setting, than the field performance of the Bendekonde system for removing total coliform. However, the Bendekonde system was more successful at removing E. coli. In a life-cycle assessment, ceramic water filters manufactured in Suriname and used in homes for a lifespan of 2 years were shown to have lower cumulative energy demand, as well as lower global warming potential than a centralized system similar to that used in Bendekonde.
Resumo:
The lack of access to sufficient water and sanitation facilities is one of the largest hindrances towards the sustainable development of the poorest 2.2 billion people in the world. Rural Uganda is one of the areas where such inaccessibility is seriously hampering their efforts at development. Many rural Ugandans must travel several kilometers to fetch adequate water and many still do not have adequate sanitation facilities. Such poor access to clean water forces Ugandans to spend an inordinate amount of time and energy collecting water - time and energy that could be used for more useful endeavors. Furthermore, the difficulty in getting water means that people use less water than they need to for optimal health and well-being. Access to other sanitation facilities can also have a large impact, particularly on the health of young children and the elderly whose immune systems are less than optimal. Hand-washing, presence of a sanitary latrine, general household cleanliness, maintenance of the safe water chain and the households’ knowledge about and adherence to sound sanitation practices may be as important as access to clean water sources. This report investigates these problems using the results from two different studies. It first looks into how access to water affects peoples’ use of it. In particular it investigates how much water households use as a function of perceived effort to fetch it. Operationally, this was accomplished by surveying nearly 1,500 residents in three different districts around Uganda about their water usage and the time and distance they must travel to fetch it. The study found that there is no statistically significant correlation between a family’s water usage and the perceived effort they must put forth to have to fetch it. On average, people use around 15 liters per person per day. Rural Ugandan residents apparently require a certain amount of water and will travel as far or as long as necessary to collect it. Secondly, a study entitled “What Works Best in Diarrheal Disease Prevention?” was carried out to study the effectiveness of five different water and sanitation facilities in reducing diarrheal disease incidences amongst children under five. It did this by surveying five different communities before and after the implementation of improvements to find changes in diarrheal disease incidences amongst children under five years of age. It found that household water treatment devices provide the best means of preventing diarrheal diseases. This is likely because water often becomes contaminated before it is consumed even if it was collected from a protected source.
Resumo:
As water quality interventions are scaled up to meet the Millennium Development Goal of halving the proportion of the population without access to safe drinking water by 2015 there has been much discussion on the merits of household- and source-level interventions. This study furthers the discussion by examining specific interventions through the use of embodied human and material energy. Embodied energy quantifies the total energy required to produce and use an intervention, including all upstream energy transactions. This model uses material quantities and prices to calculate embodied energy using national economic input/output-based models from China, the United States and Mali. Embodied energy is a measure of aggregate environmental impacts of the interventions. Human energy quantifies the caloric expenditure associated with the installation and operation of an intervention is calculated using the physical activity ratios (PARs) and basal metabolic rates (BMRs). Human energy is a measure of aggregate social impacts of an intervention. A total of four household treatment interventions – biosand filtration, chlorination, ceramic filtration and boiling – and four water source-level interventions – an improved well, a rope pump, a hand pump and a solar pump – are evaluated in the context of Mali, West Africa. Source-level interventions slightly out-perform household-level interventions in terms of having less total embodied energy. Human energy, typically assumed to be a negligible portion of total embodied energy, is shown to be significant to all eight interventions, and contributing over half of total embodied energy in four of the interventions. Traditional gender roles in Mali dictate the types of work performed by men and women. When the human energy is disaggregated by gender, it is seen that women perform over 99% of the work associated with seven of the eight interventions. This has profound implications for gender equality in the context of water quality interventions, and may justify investment in interventions that reduce human energy burdens.
Resumo:
In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.
Resumo:
Peru is a developing country with abundant fresh water resources, yet the lack of infrastructure leaves much of the population without access to safe water for domestic uses. The author of this report was a Peace Corps Volunteer in the sector of water & sanitation in the district of Independencia, Ica, Peru. Independencia is located in the arid coastal region of the country, receiving on average 15 mm of rain annually. The water source for this district comes from the Pisco River, originating in the Andean highlands and outflowing into the Pacific Ocean near the town of Pisco, Peru. The objectives of this report are to assess the water supply and sanitation practices, model the existing water distribution system, and make recommendations for future expansion of the distribution system in the district of Independencia, Peru. The assessment of water supply will be based on the results from community surveys done in the district of Independencia, water quality testing done by a detachment of the U.S. Navy, as well as on the results of a hydraulic model built in EPANET 2.0 to represent the distribution system. Sanitation practice assessments will be based on the surveys as well as observations from the author while living in Peru. Recommendations for system expansions will be made based on results from the EPANET model and the municipality’s technical report for the existing distribution system. Household water use and sanitation surveys were conducted with 84 families in the district revealing that upwards of 85% store their domestic water in regularly washed containers with lids. Over 80% of those surveyed are drinking water that is treated, mostly boiled. Of those surveyed, over 95% reported washing their hands and over 60% mentioned at least one critical time for hand washing when asked for specific instances. From the surveys, it was also discovered that over 80% of houses are properly disposing of excrement, in either latrines or septic tanks. There were 43 families interviewed with children five years of age or under, and just over 18% reported the child had a case of diarrhea within the last month at the time of the interview. Finally, from the surveys it was calculated that the average water use per person per day is about 22 liters. Water quality testing carried out by a detachment of the U.S. Navy revealed that the water intended for consumption in the houses surveyed was not suitable for consumption, with a median E. coli most probable number of 47/100 ml for the 61 houses sampled. The median total coliforms was 3,000 colony forming units per 100 ml. EPANET was used to simulate the water delivery system and evaluate its performance. EPANET is designed for continuous water delivery systems, assuming all pipes are always flowing full. To account for the intermittent nature of the system, multiple EPANET network models were created to simulate how water is routed to the different parts of the system throughout the day. The models were created from interviews with the water technicians and a map of the system created using handheld GPS units. The purpose is to analyze the performance of the water system that services approximately 13,276 people in the district of Independencia, Peru, as well as provide recommendations for future growth and improvement of the service level. Performance evaluation of the existing system is based on meeting 25 liters per person per day while maintaining positive pressure at all nodes in the network. The future performance is based on meeting a minimum pressure of 20 psi in the main line, as proposed by Chase (2000). The EPANET model results yield an average nodal pressure for all communities of 71 psi, with a range from 1.3 – 160 psi. Thus, if the current water delivery schedule obtained from the local municipality is followed, all communities should have sufficient pressure to deliver 25 l/p/d, with the exception of Los Rosales, which can only supply 3.25 l/p/d. However, if the line to Los Rosales were increased from one to four inches, the system could supply this community with 25 l/p/d. The district of Independencia could greatly benefit from increasing the service level to 24-hour water delivery and a minimum of 50 l/p/d, so that communities without reliable access due to insufficient pressure would become equal beneficiaries of this invaluable resource. To evaluate the feasibility of this, EPANET was used to model the system with a range of population growth rates, system lifetimes, and demands. In order to meet a minimum pressure of 20 psi in the main line, the 6-inch diameter main line must be increased and approximately two miles of trench must be excavated up to 30 feet deep. The sections of the main line that must be excavated are mile 0-1 and 1.5-2.5, and the first 3.4 miles of the main line must be increased from 6 to 16 inches, contracting to 10 inches for the remaining 5.8 miles. Doing this would allow 24-hour water delivery and provide 50 l/p/d for a range of population growth rates and system lifetimes. It is expected that improving the water delivery service would reduce the morbidity and mortality from diarrheal diseases by decreasing the recontamination of the water due to transport and household storage, as well as by maintaining continuous pressure in the system to prevent infiltration of contaminated groundwater. However, this expansion must be carefully planned so as not to affect aquatic ecosystems or other districts utilizing water from the Pisco River. It is recommended that stream gaging of the Pisco River and precipitation monitoring of the surrounding watershed is initiated in order to begin a hydrological study that would be integrated into the district’s water resource planning. It is also recommended that the district begin routine water quality testing, with the results available to the public.
Resumo:
Northern peatlands are large reservoirs of soil organic carbon (C). Historically peatlands have served as a sink for C since decomposition is slowed primarily because of a raised water table (WT) that creates anoxic conditions. Climate models are predicting dramatic changes in temperature and precipitation patterns for the northern hemisphere that contain more than 90% of the world’s peatlands. It is uncertain whether climate change will shift northern peatlands from C sequestering systems to a major global C source within the next century because of alterations to peatland hydrology. This research investigated the effects of 80 years of hydrological manipulations on peatland C cycling in a poor fen peatland in northern Michigan. The construction of an earthen levee within the Seney National Wildlife Refuge in the 1930’s resulted in areas of raised and lowered WT position relative to an intermediate WT site that was unaltered by the levee. We established sites across the gradient of long-term WT manipulations to examine how decadal changes in WT position alter peatland C cycling. We quantified vegetation dynamics, peat substrate quality, and pore water chemistry in relation to trace gas C cycling in these manipulated areas as well as the intermediate site. Vegetation in both the raised and lowered WT treatments has different community structure, biomass, and productivity dynamics compared to the intermediate site. Peat substrate quality exhibited differences in chemical composition and lability across the WT treatments. Pore water dissolved organic carbon (DOC) concentrations increased with impoundment and WT drawdown. The raised WT treatment DOC has a low aromaticity and is a highly labile C source, whereas WT drawdown has increased DOC aromaticity. This study has demonstrated a subtle change of the long-term WT position in a northern peatland will induce a significant influence on ecosystem C cycling with implications for the fate of peatland C stocks.
Resumo:
Due to warmer and drier conditions, wildland fire has been increasing in extent into peatland ecosystems during recent decades. As such, there is an increasing need for broadly applicable tools to detect surface peat moisture, in order to ascertain the susceptibility of peat burning, and the vulnerability of deep peat consumption in the event of a wildfire. In this thesis, a field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss dominated peatlands. Relationships were developed correlating spectral indices to surface moisture as well as water table position. Spectral convolutions were also applied to the high resolution spectra to represent spectral sensitivity of earth observing sensors. Band ratios previously used to monitor surface moisture with these sensors were assessed. Strong relationships to surface moisture and water table position are evident for both the narrowband indices as well as broadened indices. This study also found a dependence of certain spectral relationships on changes in vegetation cover by leveraging an experimental vegetation manipulation. Results indicate broadened indices employing the 1450-1650 nm region may be less stable under changing vegetation cover than those located in the 1200 nm region.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.
Resumo:
Two of the indicators of the UN Millennium Development Goals ensuring environmental sustainability are energy use and per capita carbon dioxide emissions. The increasing urbanization and increasing world population may require increased energy use in order to transport enough safe drinking water to communities. In addition, the increase in water use would result in increased energy consumption, thereby resulting in increased green-house gas emissions that promote global climate change. The study of multiple Municipal Drinking Water Distribution Systems (MDWDSs) that relates various MDWDS aspects--system components and properties--to energy use is strongly desirable. The understanding of the relationship between system aspects and energy use aids in energy-efficient design. In this study, components of a MDWDS, and/or the characteristics associated with the component are termed as MDWDS aspects (hereafter--system aspects). There are many aspects of MDWDSs that affect the energy usage. Three system aspects (1) system-wide water demand, (2) storage tank parameters, and (3) pumping stations were analyzed in this study. The study involved seven MDWDSs to understand the relationship between the above-mentioned system aspects in relation with energy use. A MDWDSs model, EPANET 2.0, was utilized to analyze the seven systems. Six of the systems were real and one was a hypothetical system. The study presented here is unique in its statistical approach using seven municipal water distribution systems. The first system aspect studied was system-wide water demand. The analysis involved analyzing seven systems for the variation of water demand and its impact on energy use. To quantify the effects of water use reduction on energy use in a municipal water distribution system, the seven systems were modeled and the energy usage quantified for various amounts of water conservation. It was found that the effect of water conservation on energy use was linear for all seven systems and that all the average values of all the systems' energy use plotted on the same line with a high R 2 value. From this relationship, it can be ascertained that a 20% reduction in water demand results in approximately a 13% savings in energy use for all seven systems analyzed. This figure might hold true for many similar systems that are dominated by pumping and not gravity driven. The second system aspect analyzed was storage tank(s) parameters. Various tank parameters: (1) tank maximum water levels, (2) tank elevation, and (3) tank diameter were considered in this part of the study. MDWDSs use a significant amount of electrical energy for the pumping of water from low elevations (usually a source) to higher ones (usually storage tanks). The use of electrical energy has an effect on pollution emissions and, therefore, potential global climate change as well. Various values of these tank parameters were modeled on seven MDWDSs of various sizes using a network solver and the energy usage recorded. It was found that when averaged over all seven analyzed systems (1) the reduction of maximum tank water level by 50% results in a 2% energy reduction, (2) energy use for a change in tank elevation is system specific, and (2) a reduction of tank diameter of 50% results in approximately a 7% energy savings. The third system aspect analyzed in this study was pumping station parameters. A pumping station consists of one or more pumps. The seven systems were analyzed to understand the effect of the variation of pump horsepower and the number of booster stations on energy use. It was found that adding booster stations could save energy depending upon the system characteristics. For systems with flat topography, a single main pumping station was found to use less energy. In systems with a higher-elevation neighborhood, however, one or more booster pumps with a reduced main pumping station capacity used less energy. The energy savings for the seven systems was dependent on the number of boosters and ranged from 5% to 66% for the analyzed five systems with higher elevation neighborhoods (S3, S4, S5, S6, and S7). No energy savings was realized for the remaining two flat topography systems, S1, and S2. The present study analyzed and established the relationship between various system aspects and energy use in seven MDWDSs. This aids in estimating the amount of energy savings in MDWDSs. This energy savings would ultimately help reduce Greenhouse gases (GHGs) emissions including per capita CO 2 emissions thereby potentially lowering the global climate change effect. This will in turn contribute to meeting the MDG of ensuring environmental sustainability.
Resumo:
This report is a case study of how Mwangalala community accesses water and how that access is maintained. Mwangalala community is located in the northern tip of Karonga district in Malawi, Africa. The case study evaluates how close the community is to meeting target 10 of the Millennium Development Goals, sustainable access to safe drinking water, and evaluates the current water system through Human Centered Design’s criteria of desirability, feasibility, and viability. It also makes recommendations to improve water security in Mwangalala community. Data was collected through two years of immersive observation, interviews with 30 families, and observing two wells on three separate occasions. The 30 interviews provided a sample size of over 10% of the community’s population. Participants were initially self-selected and then invited to participate in the research. I walked along community pathways and accepted invitations to join casual conversations in family compounds. After conversing I asked the family members if they would be willing to participate in my research by talking with me about water. Data collected from the interviews and the observations of two wells were compared and analyzed for common themes. Shallow wells or open wells represented the primary water source for 93% of interview participants. Boreholes were also present in the community, but produced unpalatable water due to high concentrations of dissolved iron and were not used as primary water sources. During observations 75% of community members who used the shallow well, primarily used for consumptive uses like cooking or dinking, were females. Boreholes were primarily used for non-consumptive uses such as watering crops or bathing and 77% of the users were male. Shallow wells could remain in disrepair for two months because the repairman was a volunteer, who was not compensated for the skilled labor required to repair the wells. Community members thought the maintenance fee went towards his salary, so did not compensate the repairman when he performed work. This miscommunication provided no incentive for the repairman to make well repairs a priority, and left community members frustrated with untimely repairs. Shallow wells with functional pumps failed to provide water when the water table levels drop during dry season, forcing community members to seek secondary or tertiary water sources. Open wells, converted from shallow wells after community members did not pay for repairs to the pump, represented 44% of the wells originally installed with Mark V hand pumps. These wells whose pumps were not repaired were located in fields and one beside a church. The functional wells were all located on school grounds or in family compounds, where responsibility for the well’s maintenance is clearly defined. Mwangalala community fails to meet Millennium Development goals because the wells used by the community do not provide sustainable access to safe drinking water. Open wells, used by half the participants in the study, lack a top covering to prevent contamination from debris and wildlife. Shallow well repair times are unsustainable, taking longer than two weeks to be repaired, primarily because the repair persons are expected to provide skilled labor to repair the wells without compensation. Improving water security for Mwangalala can be achieved by improving repair times on shallow wells and making water from boreholes palatable. There are no incentives for a volunteer repair person to fix wells in a timely manner. Repair times can be improved by reducing the number of wells a repair person is responsible for and compensating the person for the skilled labor provided. Water security would be further improved by removing iron particulates from borehole water, thus rendering it palatable. This is possible through point of use filtration utilizing ceramic candles; this would make pumped water available year-round.
Resumo:
Access to improved potable water sources is recognized as one of the key factors in improving health and alleviating global poverty. In recently years, substantial investments have been made internationally in potable water infrastructure projects, allowing 2.3 billion people to gain access to potable water from 1990-2012. One such project was planned and installed in Solla, Togo, a rural village in the northern part of the country, from 2010-2012. Ethnographic studies revealed that, while the community has access to potable water, an estimated 45% of the village’s 1500 residents still rely on unprotected sources for drinking and cooking. Additionally, inequality in system use based on income level was revealed, with the higher income groups accessing the system more regularly than lower income groups. Cost, as well as the availability of cheaper sources, was identified as the main deterrent from using the new water distribution system. A new water-pricing scheme is investigated here with the intention of making the system accessible to a greater percentage of the population. Since 2012, a village-level water committee has been responsible for operations and maintenance (O&M), fulfilling the community management model that is recommended by many development theorists in order to create sustainable projects. The water committee received post-construction support, mostly in the form of technical support during system breakdowns, from the Togolese Ministry of Water and Sanitation (MWSVH). While this support has been valuable in maintaining a functional water supply system in Solla, the water committee still has managerial challenges, particularly with billing and fee collection. As a result, the water committee has only received 2% - 25% of the fees owed at each private connection and public tap stand, making their finances vulnerable when future repairs and capital replacements are necessary. A new management structure is proposed by the MWSVH that will pay utilities workers a wage and will hire an accountant in order to improve the local management and increase revenue. This proposal is analyzed under the new water pricing schemes that are presented. Initially, the rural water supply system was powered by a diesel-generator, but in 2013, a solar photo-voltaic power supply was installed. The new system proved a fiscal improvement for the village water committee, since it drastically reduced their annual O&M costs. However, the new system pumps a smaller volume of water on a daily basis and did not meet the community’s water needs during the dry season of 2014. A hydraulic network model was developed to investigate the system’s reliability under diesel-generator (DGPS) and solar photovoltaic (PVPS) power supplies. Additionally, a new system layout is proposed for the PVPS that allows pumping directly into the distribution line, circumventing the high head associated with pumping solely to the storage tank. It was determined that this new layout would allow for a greater volume of water to be provided to the demand points over the course of a day, meeting a greater fraction of the demand than with the current layout.
Resumo:
Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.