2 resultados para Weed competition

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Switchgrass (Panicum virgatum L.) is a perennial grass holding great promise as a biofuel resource. While Michigan’s Upper Peninsula has an appropriate land base and climatic conditions, there is little research exploring the possibilities of switchgrass production. The overall objectives of this research were to investigate switchgrass establishment in the northern edge of its distribution through: investigating the effects of competition on the germination and establishment of switchgrass through the developmental and competitive characteristics of Cave-in-Rock switchgrass and large crabgrass (Digitaria sanguinalis L.) in Michigan’s Upper Peninsula; and, determining the optimum planting depths and timing for switchgrass in Michigan’s Upper Peninsula. For the competition study, a randomized complete block design was installed June 2009 at two locations in Michigan’s Upper Peninsula. Four treatments (0, 1, 4, and 8 plants/m2) of crabgrass were planted with one switchgrass plant. There was a significant difference between switchgrass biomass produced in year one, as a function of crabgrass weed pressure. There was no significant difference between the switchgrass biomass produced in year two versus previous crabgrass weed pressure. There is a significant difference between switchgrass biomass produced in year one and two. For the depth and timing study, a completely randomized design was installed at two locations in Michigan’s Upper Peninsula on seven planting dates (three fall 2009, and four spring 2010); 25 seeds were planted 2 cm apart along 0.5 m rows at depths of: 0.6 cm, 1.3 cm, and 1.9 cm. Emergence and biomass yields were compared by planting date, and depths. A greenhouse seeding experiment was established using the same planting depths and parameters as the field study. The number of seedlings was tallied daily for 30 days. There was a significant difference in survivorship between the fall and spring planting dates, with the spring being more successful. Of the four spring planting dates, there was a significant difference between May and June in emergence and biomass yield. June planting dates had the most percent emergence and total survivorship. There is no significant difference between planting switchgrass at depths of 0.6 cm, 1.3 cm, and 1.9 cm. In conclusion, switchgrass showed no signs of a legacy effect of competition from year one, on biomass production. Overall, an antagonistic effect on switchgrass biomass yield during the establishment period has been observed as a result of increasing competing weed pressure. When planting switchgrass in Michigan’s Upper Peninsula, it should be done in the spring, within the first two weeks of June, at any depth ranging from 0.6 cm to 1.9 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual life history theory is largely focused on understanding the extent to which various phenotypes of an organism are adaptive and whether they represent life history trade-offs. Compensatory growth (CG) is increasingly appreciated as a phenotype of interest to evolutionary ecologists. CG or catch-up growth involves the ability of an organism to grow at a faster-than-normal rate following periods of under-nutrition once conditions subsequently improve. Here, I examine CG in a population of moose (Alces alces) living on Isle Royale, a remote island in Lake Superior, North America. I gained insights about CG from measurements of skeletal remains of 841 moose born throughout a 52-year period. In particular, I compared the length of the metatarsal bone (ML) with several skull measurements. While ML is an index of growth while the moose is in utero and during the first year or two of life, a moose skull continues to grow until a moose is approximately 5 years of age. Because of these differences, the strength of correlation between ML and skull measurements, for a group of moose (say female moose) is an indication of that group’s capacity for CG. Using this logic, I conducted analyses whose results suggest that the capacity for CG did not differ between sexes, between individuals born during periods of high and low population densities, or between individuals exhibiting signs of senescence and those that do not. The analysis did however suggest that long-lived individuals had a greater capacity for CG than short-lived individuals. These results suggest that CG in moose is an adaptive trait and might not be associated with life history trade-offs.