8 resultados para Wave plate

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of conventional orifice-plate meter is typically restricted to measurements of steady flows. This study proposes a new and effective computational-experimental approach for measuring the time-varying (but steady-in-the-mean) nature of turbulent pulsatile gas flows. Low Mach number (effectively constant density) steady-in-the-mean gas flows with large amplitude fluctuations (whose highest significant frequency is characterized by the value fF) are termed pulsatile if the fluctuations have a direct correlation with the time-varying signature of the imposed dynamic pressure difference and, furthermore, they have fluctuation amplitudes that are significantly larger than those associated with turbulence or random acoustic wave signatures. The experimental aspect of the proposed calibration approach is based on use of Coriolis-meters (whose oscillating arm frequency fcoriolis >> fF) which are capable of effectively measuring the mean flow rate of the pulsatile flows. Together with the experimental measurements of the mean mass flow rate of these pulsatile flows, the computational approach presented here is shown to be effective in converting the dynamic pressure difference signal into the desired dynamic flow rate signal. The proposed approach is reliable because the time-varying flow rate predictions obtained for two different orifice-plate meters exhibit the approximately same qualitative, dominant features of the pulsatile flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green’s Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear-wave splitting can be a useful technique for determining crustal stress fields in volcanic settings and temporal variations associated with activity. Splitting parameters were determined for a subset of local earthquakes recorded from 2000-2010 at Yellowstone. Analysis was automated using an unsupervised cluster analysis technique to determine optimum splitting parameters from 270 analysis windows for each event. Six stations clearly exhibit preferential fast polarization values sub-orthogonal to the direction of minimum horizontal compression. Yellowstone deformation results in a local crustal stress field differing from the regional field dominated by NE-SW extension, and fast directions reflect this difference rotating around the caldera maintaining perpendicularity to the rim. One station exhibits temporal variations concordant with identified periods of caldera subsidence and uplift. From splitting measurements, we calculated a crustal anisotropy of ~17-23% and crack density ~0.12-0.17 possibly resulting from stress-aligned fluid filled microcracks in the upper crust and an active hydrothermal system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High flexural strength and stiffness can be achieved by forming a thin panel into a wave shape perpendicular to the bending direction. The use of corrugated shapes to gain flexural strength and stiffness is common in metal and reinforced plastic products. However, there is no commercial production of corrugated wood composite panels. This research focuses on the application of corrugated shapes to wood strand composite panels. Beam theory, classical plate theory and finite element models were used to analyze the bending behavior of corrugated panels. The most promising shallow corrugated panel configuration was identified based on structural performance and compatibility with construction practices. The corrugation profile selected has a wavelength equal to 8”, a channel depth equal to ¾”, a sidewall angle equal to 45 degrees and a panel thickness equal to 3/8”. 16”x16” panels were produced using random mats and 3-layer aligned mats with surface flakes parallel to the channels. Strong axis and weak axis bending tests were conducted. The test results indicate that flake orientation has little effect on the strong axis bending stiffness. The 3/8” thick random mat corrugated panels exhibit bending stiffness (400,000 lbs-in2/ft) and bending strength (3,000 in-lbs/ft) higher than 23/32” or 3/4” thick APA Rated Sturd-I-Floor with a 24” o.c. span rating. Shear and bearing test results show that the corrugated panel can withstand more than 50 psf of uniform load at 48” joist spacings. Molding trials on 16”x16” panels provided data for full size panel production. Full size 4’x8’ shallow corrugated panels were produced with only minor changes to the current oriented strandboard manufacturing process. Panel testing was done to simulate floor loading during construction, without a top underlayment layer, and during occupancy, with an underlayment over the panel to form a composite deck. Flexural tests were performed in single-span and two-span bending with line loads applied at mid-span. The average strong axis bending stiffness and bending strength of the full size corrugated panels (without the underlayment) were over 400,000 lbs-in2/ft and 3,000 in-lbs/ft, respectively. The composite deck system, which consisted of an OSB sheathing (15/32” thick) nailed-glued (using 3d ringshank nails and AFG-01 subfloor adhesive) to the corrugated subfloor achieved about 60% of the full composite stiffness resulting in about 3 times the bending stiffness of the corrugated subfloor (1,250,000 lbs-in2/ft). Based on the LRFD design criteria, the corrugated composite floor system can carry 40 psf of unfactored uniform loads, limited by the L/480 deflection limit state, at 48” joist spacings. Four 10-ft long composite T-beam specimens were built and tested for the composite action and the load sharing between a 24” wide corrugated deck system and the supporting I-joist. The average bending stiffness of the composite T-beam was 1.6 times higher than the bending stiffness of the I-joist. A 8-ft x 12-ft mock up floor was built to evaluate construction procedures. The assembly of the composite floor system is relatively simple. The corrugated composite floor system might be able to offset the cheaper labor costs of the single-layer Sturd-IFloor through the material savings. However, no conclusive result can be drawn, in terms of the construction costs, at this point without an in depth cost analysis of the two systems. The shallow corrugated composite floor system might be a potential alternative to the Sturd-I-Floor in the near future because of the excellent flexural stiffness provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally conductive resins are a class of material that show promise in many different applications. One growing field for their use is in the area of bipolar plate technology for fuel cell applications. In this work, a LCP was mixed with different types of carbon fillers to determine the effects of the individual carbon fillers on the thermal conductivity of the composite resin. In addition, mathematical modeling was performed on the thermal conductivity data with the goal of developing predictive models for the thermal conductivity of highly filled composite resins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished. Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (εr>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Men and women respond to situations according to their community’s social codes. With menstruation, people adhere to “menstrual codes”. Within academic communities, people adhere to “academic codes”. This report paper investigates performances of academic codes and menstrual codes. Implications of gender identity and race are missing and/or minimal in past feminist work regarding menstruation. This paper includes considerations for gender identity and race. Within the examination of academic codes, this paper discusses the inhibitive process of idea creation within the academic sphere, and the limitations to the predominant ways of knowledge sharing within, and outside of, the academic community. The digital project (www.hu.mtu.edu/~creynolds) is one example of how academic and menstrual codes can be broken. The report and project provide a broadly accessible deconstruction of menstrual advertising and academic theories while fostering conversations on menstruation through the sharing of knowledge with others, regardless of gender, race, or academic standing.