3 resultados para Waste water treatments plants

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Space Station (ISS) requires a substantial amount of potable water for use by the crew. The economic and logistic limitations of transporting the vast amount of water required onboard the ISS necessitate onboard recovery and reuse of the aqueous waste streams. Various treatment technologies are employed within the ISS water processor to render the waste water potable, including filtration, ion exchange, adsorption, and catalytic wet oxidation. The ion exchange resins and adsorption media are combined in multifiltration beds for removal of ionic and organic compounds. A mathematical model (MFBMODEL™) designed to predict the performance of a multifiltration (MF) bed was developed. MFBMODEL consists of ion exchange models for describing the behavior of the different resin types in a MF bed (e.g., mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins) and an adsorption model capable of predicting the performance of the adsorbents in a MF bed. Multicomponent ion exchange ii equilibrium models that incorporate the water formation reaction, electroneutrality condition, and degree of ionization of weak acids and bases for mixed bed, strong acid cation, strong base anion, and weak base anion exchange resins were developed and verified. The equilibrium models developed use a tanks-inseries approach that allows for consideration of variable influent concentrations. The adsorption modeling approach was developed in related studies and application within the MFBMODEL framework was demonstrated in the Appendix to this study. MFBMODEL consists of a graphical user interface programmed in Visual Basic and Fortran computational routines. This dissertation shows MF bed modeling results in which the model is verified for a surrogate of the ISS waste shower and handwash stream. In addition, a multicomponent ion exchange model that incorporates mass transfer effects was developed, which is capable of describing the performance of strong acid cation (SAC) and strong base anion (SBA) exchange resins, but not including reaction effects. This dissertation presents results showing the mass transfer model's capability to predict the performance of binary and multicomponent column data for SAC and SBA exchange resins. The ion exchange equilibrium and mass transfer models developed in this study are also applicable to terrestrial water treatment systems. They could be applied for removal of cations and anions from groundwater (e.g., hardness, nitrate, perchlorate) and from industrial process waters (e.g. boiler water, ultrapure water in the semiconductor industry).