6 resultados para WATER ESCAPE STRUCTURES

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rice (Oryza sativa L.) is an important cash crop in Honduras because of the rice lobby’s size, willingness to protest, and ability to negotiate favorable price guarantees on a year-to-year basis. Despite the availability of inexpensive irrigation in the study area in Flores, La Villa de San Antonio, Comayagua, the rice farmers do not cultivate the crop using prescribed methods such as land leveling, puddling, and water conservation structures. Soil moisture (Volumetric Water Content) was measured using a soil moisture probe after the termination of the first irrigation within the tillering/vegetative, panicle emergence/flowering, post-flowering/pre-maturation and maturation stages. Yield data was obtained by harvesting on 1 m2 plots in each soil moisture testing site. Data was analyzed to find the influence of toposequential position along transects, slope, soil moisture, and farmers on yields. The results showed that toposequential position was more important than slope and soil moisture on yields. Soil moisture was not a significant predictor of rice yields. Irrigation politics, precipitation, and land tenure were proposed as the major explanatory variables for this result.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) is responsible for managing over 2500 miles of waterways and hundreds of water control structures. Many of these control structures are experiencing erosion, known as scour, of the sediment downstream of the structure. Laboratory experiments were conducted in order to investigate the effectiveness of two-dimensional air diffusers and plate extensions (without air injection) on a 1/30 scale model of one of SFWMD gated spillway structures, the S65E gated spillway. A literature review examining the results of similar studies was conducted. The experimental design for this research was based off of previous work done on the same model. Scour of the riverbed downstream of gated spillway structures has the potential to cause serious damage, as it can expose the foundation of the structure, which can lead to collapse. This type of scour has been studied previously, but it continues to pose a risk to water control structures and needs to be studied further. The hydraulic scour channel used to conduct experiments contains a head tank, flow straighteners, gated spillway, stilling basin, scour chamber, sediment trap, and tailwater tank. Experiments were performed with two types of air diffusers. The first was a hollow, acrylic, triangular end sill with air injection holes on the upstream face, allowing for air injection upstream. The second diffuser was a hollow, acrylic rectangle that extended from the triangular end sill with air injection holes in the top face, allowing for vertical air injection, perpendicular to flow. Detailed flow and bed measurements were taken for six trials for each diffuser ranging from no air injection to 5 rows of 70 holes of 0.04" diameter. It was found that with both diffusers, the maximum amount of air injection reduced scour the most. Detailed velocity measurements were taken for each case and turbulence statistics were analyzed to determine why air injection reduces scour. It was determined that air injection reduces streamwise velocity and turbulence. Another set of experiments was performed using an acrylic extension plate with no air injection to minimize energy costs. Ten different plate lengths were tested. It was found that the location of deepest scour moved further downstream with each plate length. The 32-cm plate is recommended here. Detailed velocity measurements were taken after the cases with the 32-cm plate and no plate had reached equilibrium. This was done to better understand the flow patterns in order to determine what causes the scour reduction with the extension plates. The extension plate reduces the volume of scour, but more importantly translates the deepest point of scour downstream from the structure, lessening the risk of damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isolated water-soluble analytes extracted from fog water collected during a radiation fog event near Fresno, CA were analyzed using collision induced dissociation and ultrahigh-resolution mass spectrometry. Tandem mass analysis was performed on scan ranges between 100-400 u to characterize the structures of nitrogen and/or sulfur containing species. CHNO, CHOS, and CHNOS compounds were targeted specifically because of the high number of oxygen atoms contained in their molecular formulas. The presence of 22 neutral losses corresponding to fragment ions was evaluated for each of the 1308 precursors. Priority neutral losses represent specific polar functional groups (H2O, CO2, CH3OH, HNO3, SO3, etc., and several combinations of these). Additional neutral losses represent non-specific functional groups (CO, CH2O, C3H8, etc.) Five distinct monoterpene derived organonitrates, organosulfates, and nitroxy-organosulfates were observed in this study, including C10H16O7S, C10H17NO7S, C10H17 NO8S, C10H17NO9S, and C10H17NO10S. Nitrophenols and linear alkyl benzene sulfonates were present in high abundance. Liquid chromatography/mass spectrometery methodology was developed to isolate and quantify nitrophenols based on their fragmentation behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are interested in the syntheses of new complexes and in their characterization by single crystal X-ray diffraction techniques. Once we understand the structures, studies aimed at understanding uses of these complexes in the field of catalytic epoxidation using complexes soluble in water and syntheses of thin films (not assessed) were conducted. The syntheses, characterization and catalytic properties of a series of mononuclear, dinuclear and tetranuclear molybdenum and tungsten oxo complexes are described. The syntheses and structural characterization of two copper coordination polymers with 3,5-dihydroxylbenzoate ligand, and five paddlewheel shaped copper dendrimers coordinated with Fréchet-type dendrons are also detailed. The background of this dissertation is outlined in Chapter 1. Chapter 2 describes the syntheses, and characterization of two new mononuclear molybdenum(VI) and tungsten(VI) oxo complexes, MoO2Cl2(OPPh2CH2OH)2, and WO2Cl2(OPPh2CH2OH)2, bearing hydrophilic phosphine oxide ligand. The catalytic properties of these complexes for the epoxidation of cis-cyclooctene were also studied. Two new dinuclear molybdenum(VI) and tungsten(VI) oxo complexes Mo2O4Cl2[(HOCH2)PhPOO]2, and (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, bearing organophosphinate ligand are described in Chapter 3 and 4. Chapter 4 and 5 describes the syntheses and characterization of tetranuclear molybdenum(V) oxo complexes bearing various organophosphinate ligands. The catalytic abilities of these complexes for the epoxidation of cis-cyclooctene in the presence of hydrogen peroxide as oxidant were explored as well. Various spectroscopic methods, such as IR, UV-vis, and NMR are used to characterize the nature of these complexes. Crystal structures of compounds MoO2Cl2(OPPh2CH2OH)2, WO2Cl2(OPPh2CH2OH)2, Mo2O4Cl2[(HOCH2)PhPOO]2, (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, and Mo4(µ3-O)4(µ-O2PR2)4O4 (R=Ph, Me, ClCH2, o-C6H4(CH2)2) are also presented. The syntheses, and structural characterization of three copper(II) coordination polymers bearing 3,5-dihydroxybenzoate ligand are described in Chapter 6. Two copper(II) coordination polymers, [Cu2(3,5-dhb)2(pyridine)4]n, and [Cu2(3,5-dhb)4]n were afforded based on different amount of pyridine used in the reaction. The structures of these complexes are further built into 2D or 3D networks via inter or intra hydrogen bonds. The syntheses and structural characterization of the zinc(II) monomer, Zn(3,5-dhb)2(pyridine)2 is also described in this Chapter. Chapter 7 describes the syntheses, and characterization of five dendronized dicopper complexes bearing different generations of Fréchet-type dendrons. The structures of 3,5- bis(benzoyloxl)benzoic acid, 3,5-(PhCOO)2PhCOOH (G1), Cu2(3,5-dhb)4(THF)2, Cu2(G1)4(pyridine)2, and Cu2(G1)4(CH3OH)2 were characterized unambiguously by single X-ray diffraction. In addition, all compounds were characterized by FT-IR, UV-vis spectroscopy and elemental analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gravity-flow aqueducts are used to bring clean water from mountain springs in the Comarca Ngäbe-Buglé, Panama, to the homes of the indigenous people who reside there. Spring captures enclose a spring to direct the flow of water into the transmission line. Seepage contact springs are most common, with water appearing above either hard basalt bedrock or a dense clay layer. Spring flows vary dramatically during wet and dry seasons, and discharge points of springs can shift, sometimes enough to impact the capture structure and its ability to properly collect all of the available water. Traditionally, spring captures are concrete boxes. The spring boxes observed by the author were dilapidated or out of alignment with the spring itself, only capturing part of the discharge. An improved design approach was developed that mimics the terrain surrounding the spring source to address these issues. Over the course of a year, three different spring sites were evaluated, and spring captures were designed and constructed based on the new approach. Spring flow data from each case study demonstrate increased flow capture in the improved structures. Rural water systems, including spring captures, can be sustainably maintained by the Circuit Rider model, a technical support system in which technical assistance is provided for the operation of the water systems. During 2012-2013, the author worked as a Circuit Rider and facilitated a water system improvement project while exploring methods of community empowerment to increase the capacity for system maintenance. Based on these experiences, recommendations are provided to expand the Circuit Rider model in the Comarca Ngäbe-Buglé under the Panamanian Ministry of Health’s Water and Sanitation Project (PASAP)