5 resultados para Vehicle Interior Controls and Handles.

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is remarkable that there are no deployed military hybrid vehicles since battlefield fuel is approximately 100 times the cost of civilian fuel. In the commercial marketplace, where fuel prices are much lower, electric hybrid vehicles have become increasingly common due to their increased fuel efficiency and the associated operating cost benefit. An absence of military hybrid vehicles is not due to a lack of investment in research and development, but rather because applying hybrid vehicle architectures to a military application has unique challenges. These challenges include inconsistent duty cycles for propulsion requirements and the absence of methods to look at vehicle energy in a holistic sense. This dissertation provides a remedy to these challenges by presenting a method to quantify the benefits of a military hybrid vehicle by regarding that vehicle as a microgrid. This innovative concept allowed for the creation of an expandable multiple input numerical optimization method that was implemented for both real-time control and system design optimization. An example of each of these implementations was presented. Optimization in the loop using this new method was compared to a traditional closed loop control system and proved to be more fuel efficient. System design optimization using this method successfully illustrated battery size optimization by iterating through various electric duty cycles. By utilizing this new multiple input numerical optimization method, a holistic view of duty cycle synthesis, vehicle energy use, and vehicle design optimization can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a nitramine compound that has been used heavily by the military as an explosive. Manufacturing, use, and disposal of RDX have led to several contamination sites across the United States. RDX is both persistent in the environment and a threat to human health, making its remediation vital. The use of plants to extract RDX from the soil and metabolize it once it is in the plant tissue, is being considered as a possible solution. In the present study, the tropical grass Chrysopogon zizanioides was grown hydroponically in the presence RDX at 3 different concentration levels: 0.3, 1.1, and 2.26 ppm. The uptake of RDX was quantified by high performance liquid chromatography (HPLC) analysis of media samples taken every 6 hr during the first 24 hr and then daily over a 30-day experimental period. A rapid decrease in RDX concentration in the media of both controls and plant treatments was seen within the first 18 hours of the experiment with the greatest loss in RDX over time occurring within the first 6 hours of exposure. The loss was similar in both controls and plant exposures and possibly attributed to rapid uptake by the containers. A plant from one treatment at each of the three concentrations was harvested at Day 10, 20 and 30 throughout the experiment and extracted to determine the localization of RDX within the tissue and potentially identify any metabolites on the basis of differing retention times. Of the treatments containing 0.3, 1.1, and 2.26 ppm RDX, 13.1%, 18.3%, and 24.2% respectively, was quantified in vetiver extracts, with the majority of the RDX being localized to the roots. All plants not yet harvested were harvested on Day 30 of the experiment. A total of three plants exposed to each concentration level as well as the control, were extracted and analyzed with HPLC to determine amount of RDX taken up, localization of RDX within the plant tissue, and potentially identify any metabolites. Phytotoxicity of RDX to vetiver was also monitored. While a loss in biomass was observed in plants exposed to all the different concentrations of RDX, control plants grown in media not exposed to RDX showed the greatest biomass loss of all the treatments. There was also little variation in chlorophyll content between the different concentration treatments with RDX. This preliminary greenhouse study of RDX uptake 10 by Chrysopogon zizanioides will help indicate the potential ability of vetiver to serve as a plant system in the phytoremediation of RDX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report summarizes the work done for the Vehicle Powertrain Modeling and Design Problem Proposal portion of the EcoCAR3 proposal as specified in the Request for Proposal from Argonne National Laboratory. The results of the modeling exercises presented in the proposal showed that: An average conventional vehicle powered by a combustion engine could not meet the energy consumption target when the engine was sized to meet the acceleration target, due the relatively low thermal efficiency of the spark ignition engine. A battery electric vehicle could not meet the required range target of 320 km while keeping the vehicle weight below the gross vehicle weight rating of 2000 kg. This was due to the low energy density of the batteries which necessitated a large, and heavy, battery pack to provide enough energy to meet the range target. A series hybrid electric vehicle has the potential to meet the acceleration and energy consumption parameters when the components are optimally sized. A parallel hybrid electric vehicle has less energy conversion losses than a series hybrid electric vehicle which results in greater overall efficiency, lower energy consumption, and less emissions. For EcoCAR3, Michigan Tech proposes to develop a plug-in parallel hybrid vehicle (PPHEV) powered by a small Diesel engine operating on B20 Bio-Diesel fuel. This architecture was chosen over other options due to its compact design, lower cost, and its ability to provide performance levels and energy efficiency that meet or exceed the design targets. While this powertrain configuration requires a more complex control system and strategy than others, the student engineering team at Michigan Tech has significant recent experience with this architecture and has confidence that it will perform well in the events planned for the EcoCAR3 competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.