2 resultados para Upper layer

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The herbaceous layer is a dynamic layer in a forest ecosystem which often contains the highest species richness in northern temperate forests. Few long-term studies exist in northern hardwood forests with consistent management practices to observe herbaceous species dynamics. The Ford Forest (Michigan Technological University) reached its 50th year of management during the winter of 2008-2009. Herbaceous species were sampled during the summers pre- and post-harvest. Distinct herbaceous communities developed in the 13-cm diameter-limit treatment and the uncut control. After the harvest, the diameter-limit treatments had herbaceous communities more similar to the 13-cm diameter-limit treatment than the uncut control; the herbaceous layer contained more exotic and early successional species. Fifty years of continuous management changed the herbaceous community especially in the diameter-limit treatments. Sites used in the development of habitat classification systems based on the presence and absence of certain herbaceous species can also be used to monitor vegetation change over time. The Guide to Forest Communities and Habitat Types of Michigan was developed to aid forest managers in understanding the potential productivity of a stand, and often aid in the development of ecologically-based forest management practices. Subsets of plots used to create the Western Upper Peninsula Guide were resampled after 10 years. During the resampling, both spring and summer vegetation were sampled and earthworm populations were estimated through liquid extraction. Spring sampling observed important spring ephemerals missed during summer sampling. More exotic species were present during the summer 2010 sampling than the summer 2000 sampling. Invasive European earthworms were also observed at all sample locations in all habitat types; earthworm densities increased with increasing habitat richness. To ensure the accuracy of the guide book, plots should be monitored to see how herbaceous communities are changing. These plots also offer unique opportunities to monitor for invasive species and the effects of a changing climate.