4 resultados para Upper bound method
em Digital Commons - Michigan Tech
Resumo:
Steel tubular cast-in-place pilings are used throughout the country for many different project types. These piles are a closed-end pipe with varying wall thicknesses and outer diameters, that are driven to depth and then the core is filled with concrete. These piles are typically used for smaller bridges, or secondary structures. Mostly the piling is designed based on a resistance based method which is a function of the soil properties of which the pile is driven through, however there is a structural capacity of these members that is considered to be the upper bound on the loading of the member. This structural capacity is given by the AASHTO LRFD (2010), with two methods. These two methods are based on a composite or non-composite section. Many state agencies and corporations use the non-composite equation because it is requires much less computation and is known to be conservative. However with the trends of the time, more and more structural elements are being investigated to determine ways to better understand the mechanics of the members, which could lead to more efficient and safer designs. In this project, a set of these piling are investigated. The way the cross section reacts to several different loading conditions, along with a more detailed observation of the material properties is considered as part of this research. The evaluation consisted of testing stub sections of pile with varying sizes (10-¾”, 12-¾”), wall thicknesses (0.375”, 0.5”), and testing methods (whole compression, composite compression, push through, core sampling). These stub sections were chosen as they would represent a similar bracing length to many different soils. In addition, a finite element model was developed using ANSYS to predict the strains from the testing of the pile cross sections. This model was able to simulate the strains from most of the loading conditions and sizes that were tested. The bond between the steel shell and the concrete core, along with the concrete strength through the depth of the cross section were some of the material properties of these sections that were investigated.
Resumo:
Intermediaries permeate modern economic exchange. Most classical models on intermediated exchange are driven by information asymmetry and inventory management. These two factors are of reduced significance in modern economies. This makes it necessary to develop models that correspond more closely to modern financial marketplaces. The goal of this dissertation is to propose and examine such models in a game theoretical context. The proposed models are driven by asymmetries in the goals of different market participants. Hedging pressure as one of the most critical aspects in the behavior of commercial entities plays a crucial role. The first market model shows that no equilibrium solution can exist in a market consisting of a commercial buyer, a commercial seller and a non-commercial intermediary. This indicates a clear economic need for non-commercial trading intermediaries: a direct trade from seller to buyer does not result in an equilibrium solution. The second market model has two distinct intermediaries between buyer and seller: a spread trader/market maker and a risk-neutral intermediary. In this model a unique, natural equilibrium solution is identified in which the supply-demand surplus is traded by the risk-neutral intermediary, whilst the market maker trades the remainder from seller to buyer. Since the market maker’s payoff for trading at the identified equilibrium price is zero, this second model does not provide any motivation for the market maker to enter the market. The third market model introduces an explicit transaction fee that enables the market maker to secure a positive payoff. Under certain assumptions on this transaction fee the equilibrium solution of the previous model applies and now also provides a financial motivation for the market maker to enter the market. If the transaction fee violates an upper bound that depends on supply, demand and riskaversity of buyer and seller, the market will be in disequilibrium.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.