3 resultados para Underground excavation
em Digital Commons - Michigan Tech
Resumo:
Slope stability analysis is a major area of research in geotechnical engineering. That being said, very little is written in the geotechnical engineering literature on the design of box-cuts. The goal of this thesis will be to investigate the proper design of a boxcuts, and to design a box-cut for access to an underground copper mine. Issues that need to be considered in the box-cut design include, long term dewatering design, slope stability analysis, and erosion control. The soils at the project site were extremely low permeability, as a result a system of ejectors was designed both to improve the stability of the slopes and prevent flooding. Based on the results of limit equilibrium analysis and finite element analysis, a slope design of two horizontal on one vertical was selection, with a rock fill buttress providing reinforcement. Finally, Michigan DOT standards for seeding were used to provide erosion control
Resumo:
In 1988 a landslide occurred at a construction site in Birmingham, Alabama in which a portion of the construction site required excavating a rock slope with a group of apartments that were located at the top of the slope. During construction, two separate landslides occurred causing one and half of the apartment buildings to collapse downslope. The slope failure was investigated by two firms. One firm investigated the site conditions and the second firm investigated the design of the cut slope. The main concerns in the investigation were (1) the lack of consideration for the existing joint system, (2) using averaged the strength parameters, (3) the possibility of damaging the slope with blasting, and (4) the potential that there were underground mines at the site. The Rocscience program RocPlane was used to model the in situ conditions and the excavation. The model showed that the joint system’s pore water pressure was most likely the main factor in the failure.
Resumo:
When underground mines close they often fill with water from ground and surface sources; each mine can contain millions to billions of gallons of water. This water, heated by the Earth’s geothermal energy, reaches temperatures ideal for heat pumps. The sheer scale of these flooded underground mines presents a unique opportunity for large scale geothermal heat pump setups which would not be as economically, socially, and environmentally feasible anywhere else. A literature search revealed approximately 30 instances of flooded underground mines being used to heat and cool buildings worldwide. With thousands of closed/abandoned underground mines in the U.S. and a million estimated globally, why hasn’t this opportunity been more widely adopted? This project has found perception and lack of knowledge about the feasibility to be key barriers. To address these issues, this project drafted a guidebook for former mining communities titled A Community Guide to Mine Water Geothermal Heating and Cooling.