6 resultados para Uncertainty in governance
em Digital Commons - Michigan Tech
Resumo:
A mass‐balance model for Lake Superior was applied to polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and mercury to determine the major routes of entry and the major mechanisms of loss from this ecosystem as well as the time required for each contaminant class to approach steady state. A two‐box model (water column, surface sediments) incorporating seasonally adjusted environmental parameters was used. Both numerical (forward Euler) and analytical solutions were employed and compared. For validation, the model was compared with current and historical concentrations and fluxes in the lake and sediments. Results for PCBs were similar to prior work showing that air‐water exchange is the most rapid input and loss process. The model indicates that mercury behaves similarly to a moderately‐chlorinated PCB, with air‐water exchange being a relatively rapid input and loss process. Modeled accumulation fluxes of PBDEs in sediments agreed with measured values reported in the literature. Wet deposition rates were about three times greater than dry particulate deposition rates for PBDEs. Gas deposition was an important process for tri‐ and tetra‐BDEs (BDEs 28 and 47), but not for higher‐brominated BDEs. Sediment burial was the dominant loss mechanism for most of the PBDE congeners while volatilization was still significant for tri‐ and tetra‐BDEs. Because volatilization is a relatively rapid loss process for both mercury and the most abundant PCBs (tri‐ through penta‐), the model predicts that similar times (from 2 ‐ 10 yr) are required for the compounds to approach steady state in the lake. The model predicts that if inputs of Hg(II) to the lake decrease in the future then concentrations of mercury in the lake will decrease at a rate similar to the historical decline in PCB concentrations following the ban on production and most uses in the U.S. In contrast, PBDEs are likely to respond more slowly if atmospheric concentrations are reduced in the future because loss by volatilization is a much slower process for PBDEs, leading to lesser overall loss rates for PBDEs in comparison to PCBs and mercury. Uncertainties in the chemical degradation rates and partitioning constants of PBDEs are the largest source of uncertainty in the modeled times to steady‐state for this class of chemicals. The modeled organic PBT loading rates are sensitive to uncertainties in scavenging efficiencies by rain and snow, dry deposition velocity, watershed runoff concentrations, and uncertainties in air‐water exchange such as the effect of atmospheric stability.
Resumo:
Fuel Cells are a promising alternative energy technology. One of the biggest problems that exists in fuel cell is that of water management. A better understanding of wettability characteristics in the fuel cells is needed to alleviate the problem of water management. Contact angle data on gas diffusion layers (GDL) of the fuel cells can be used to characterize the wettability of GDL in fuel cells. A contact angle measurement program has been developed to measure the contact angle of sessile drops from drop images. Digitization of drop images induces pixel errors in the contact angle measurement process. The resulting uncertainty in contact angle measurement has been analyzed. An experimental apparatus has been developed for contact angle measurements at different temperature, with the feature to measure advancing and receding contact angles on gas diffusion layers of fuel cells.
Resumo:
Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.
Resumo:
Several deterministic and probabilistic methods are used to evaluate the probability of seismically induced liquefaction of a soil. The probabilistic models usually possess some uncertainty in that model and uncertainties in the parameters used to develop that model. These model uncertainties vary from one statistical model to another. Most of the model uncertainties are epistemic, and can be addressed through appropriate knowledge of the statistical model. One such epistemic model uncertainty in evaluating liquefaction potential using a probabilistic model such as logistic regression is sampling bias. Sampling bias is the difference between the class distribution in the sample used for developing the statistical model and the true population distribution of liquefaction and non-liquefaction instances. Recent studies have shown that sampling bias can significantly affect the predicted probability using a statistical model. To address this epistemic uncertainty, a new approach was developed for evaluating the probability of seismically-induced soil liquefaction, in which a logistic regression model in combination with Hosmer-Lemeshow statistic was used. This approach was used to estimate the population (true) distribution of liquefaction to non-liquefaction instances of standard penetration test (SPT) and cone penetration test (CPT) based most updated case histories. Apart from this, other model uncertainties such as distribution of explanatory variables and significance of explanatory variables were also addressed using KS test and Wald statistic respectively. Moreover, based on estimated population distribution, logistic regression equations were proposed to calculate the probability of liquefaction for both SPT and CPT based case history. Additionally, the proposed probability curves were compared with existing probability curves based on SPT and CPT case histories.
Resumo:
This project addresses the potential impacts of changing climate on dry-season water storage and discharge from a small, mountain catchment in Tanzania. Villagers and water managers around the catchment have experienced worsening water scarcity and attribute it to increasing population and demand, but very little has been done to understand the physical characteristics and hydrological behavior of the spring catchment. The physical nature of the aquifer was characterized and water balance models were calibrated to discharge observations so as to be able to explore relative changes in aquifer storage resulting from climate changes. To characterize the shallow aquifer supplying water to the Jandu spring, water quality and geochemistry data were analyzed, discharge recession analysis was performed, and two water balance models were developed and tested. Jandu geochemistry suggests a shallow, meteorically-recharged aquifer system with short circulation times. Baseflow recession analysis showed that the catchment behavior could be represented by a linear storage model with an average recession constant of 0.151/month from 2004-2010. Two modified Thornthwaite-Mather Water Balance (TMWB) models were calibrated using historic rainfall and discharge data and shown to reproduce dry-season flows with Nash-Sutcliffe efficiencies between 0.86 and 0.91. The modified TMWB models were then used to examine the impacts of nineteen, perturbed climate scenarios to test the potential impacts of regional climate change on catchment storage during the dry season. Forcing the models with realistic scenarios for average monthly temperature, annual precipitation, and seasonal rainfall distribution demonstrated that even small climate changes might adversely impact aquifer storage conditions at the onset of the dry season. The scale of the change was dependent on the direction (increasing vs. decreasing) and magnitude of climate change (temperature and precipitation). This study demonstrates that small, mountain aquifer characterization is possible using simple water quality parameters, recession analysis can be integrated into modeling aquifer storage parameters, and water balance models can accurately reproduce dry-season discharges and might be useful tools to assess climate change impacts. However, uncertainty in current climate projections and lack of data for testing the predictive capabilities of the model beyond the present data set, make the forecasts of changes in discharge also uncertain. The hydrologic tools used herein offer promise for future research in understanding small, shallow, mountainous aquifers and could potentially be developed and used by water resource professionals to assess climatic influences on local hydrologic systems.
Resumo:
The purpose of this study is to explore a Kalman Filter approach to estimating swing of crane-suspended loads. Measuring real-time swing is needed to implement swing damping control strategies where crane joints are used to remove energy from a swinging load. The typical solution to measuring swing uses an inertial sensor attached to the hook block. Measured hook block twist is used to resolve the other two sensed body rates into tangential and radial swing. Uncertainty in the twist measurement leads to inaccurate tangential and radial swing calculations and ineffective swing damping. A typical mitigation approach is to bandpass the inertial sensor readings to remove low frequency drift and high frequency noise. The center frequency of the bandpass filter is usually designed to track the load length and the pass band width set to trade off performance with damping loop gain. The Kalman Filter approach developed here allows all swing motions (radial, tangential and twist) to be measured without the use of a bandpass filter. This provides an alternate solution for swing damping control implementation. After developing a Kalman Filter solution for a two-dimensional swing scenario, the three-dimensional system is considered where simplifying assumptions, suggested by the two-dimensional study, are exploited. One of the interesting aspects of the three-dimensional study is the hook block twist model. Unlike the mass-independence of a pendulum's natural frequency, the twist natural frequency depends both on the pendulum length and the load’s mass distribution. The linear Kalman Filter is applied to experimental data demonstrating the ability to extract the individual swing components for complex motions. It should be noted that the three-dimensional simplifying assumptions preclude the ability to measure two "secondary" hook block rotations. The ability to segregate these motions from the primary swing degrees of freedom was illustrated in the two-dimensional study and could be included into the three-dimensional solution if they were found to be important for a particular application.