6 resultados para Turbulent Shear Flows
em Digital Commons - Michigan Tech
Resumo:
This doctoral thesis presents the experimental results along with a suitable synthesis with computational/theoretical results towards development of a reliable heat transfer correlation for a specific annular condensation flow regime inside a vertical tube. For fully condensing flows of pure vapor (FC-72) inside a vertical cylindrical tube of 6.6 mm diameter and 0.7 m length, the experimental measurements are shown to yield values of average heat transfer co-efficient, and approximate length of full condensation. The experimental conditions cover: mass flux G over a range of 2.9 kg/m2-s ≤ G ≤ 87.7 kg/m2-s, temperature difference ∆T (saturation temperature at the inlet pressure minus the mean condensing surface temperature) of 5 ºC to 45 ºC, and cases for which the length of full condensation xFC is in the range of 0 < xFC < 0.7 m. The range of flow conditions over which there is good agreement (within 15%) with the theory and its modeling assumptions has been identified. Additionally, the ranges of flow conditions for which there are significant discrepancies (between 15 -30% and greater than 30%) with theory have also been identified. The paper also refers to a brief set of key experimental results with regard to sensitivity of the flow to time-varying or quasi-steady (i.e. steady in the mean) impositions of pressure at both the inlet and the outlet. The experimental results support the updated theoretical/computational results that gravity dominated condensing flows do not allow such elliptic impositions.
Resumo:
This doctoral thesis presents the computational work and synthesis with experiments for internal (tube and channel geometries) as well as external (flow of a pure vapor over a horizontal plate) condensing flows. The computational work obtains accurate numerical simulations of the full two dimensional governing equations for steady and unsteady condensing flows in gravity/0g environments. This doctoral work investigates flow features, flow regimes, attainability issues, stability issues, and responses to boundary fluctuations for condensing flows in different flow situations. This research finds new features of unsteady solutions of condensing flows; reveals interesting differences in gravity and shear driven situations; and discovers novel boundary condition sensitivities of shear driven internal condensing flows. Synthesis of computational and experimental results presented here for gravity driven in-tube flows lays framework for the future two-phase component analysis in any thermal system. It is shown for both gravity and shear driven internal condensing flows that steady governing equations have unique solutions for given inlet pressure, given inlet vapor mass flow rate, and fixed cooling method for condensing surface. But unsteady equations of shear driven internal condensing flows can yield different “quasi-steady” solutions based on different specifications of exit pressure (equivalently exit mass flow rate) concurrent to the inlet pressure specification. This thesis presents a novel categorization of internal condensing flows based on their sensitivity to concurrently applied boundary (inlet and exit) conditions. The computational investigations of an external shear driven flow of vapor condensing over a horizontal plate show limits of applicability of the analytical solution. Simulations for this external condensing flow discuss its stability issues and throw light on flow regime transitions because of ever-present bottom wall vibrations. It is identified that laminar to turbulent transition for these flows can get affected by ever present bottom wall vibrations. Detailed investigations of dynamic stability analysis of this shear driven external condensing flow result in the introduction of a new variable, which characterizes the ratio of strength of the underlying stabilizing attractor to that of destabilizing vibrations. Besides development of CFD tools and computational algorithms, direct application of research done for this thesis is in effective prediction and design of two-phase components in thermal systems used in different applications. Some of the important internal condensing flow results about sensitivities to boundary fluctuations are also expected to be applicable to flow boiling phenomenon. Novel flow sensitivities discovered through this research, if employed effectively after system level analysis, will result in the development of better control strategies in ground and space based two-phase thermal systems.
Resumo:
Several modern-day cooling applications require the incorporation of mini/micro-channel shear-driven flow condensers. There are several design challenges that need to be overcome in order to meet those requirements. The difficulty in developing effective design tools for shear-driven flow condensers is exacerbated due to the lack of a bridge between the physics-based modelling of condensing flows and the current, popular approach based on semi-empirical heat transfer correlations. One of the primary contributors of this disconnect is a lack of understanding caused by the fact that typical heat transfer correlations eliminate the dependence of the heat transfer coefficient on the method of cooling employed on the condenser surface when it may very well not be the case. This is in direct contrast to direct physics-based modeling approaches where the thermal boundary conditions have a direct and huge impact on the heat transfer coefficient values. Typical heat transfer correlations instead introduce vapor quality as one of the variables on which the value of the heat transfer coefficient depends. This study shows how, under certain conditions, a heat transfer correlation from direct physics-based modeling can be equivalent to typical engineering heat transfer correlations without making the same apriori assumptions. Another huge factor that raises doubts on the validity of the heat-transfer correlations is the opacity associated with the application of flow regime maps for internal condensing flows. It is well known that flow regimes influence heat transfer rates strongly. However, several heat transfer correlations ignore flow regimes entirely and present a single heat transfer correlation for all flow regimes. This is believed to be inaccurate since one would expect significant differences in the heat transfer correlations for different flow regimes. Several other studies present a heat transfer correlation for a particular flow regime - however, they ignore the method by which extents of the flow regime is established. This thesis provides a definitive answer (in the context of stratified/annular flows) to: (i) whether a heat transfer correlation can always be independent of the thermal boundary condition and represented as a function of vapor quality, and (ii) whether a heat transfer correlation can be independently obtained for a flow regime without knowing the flow regime boundary (even if the flow regime boundary is represented through a separate and independent correlation). To obtain the results required to arrive at an answer to these questions, this study uses two numerical simulation tools - the approximate but highly efficient Quasi-1D simulation tool and the exact but more expensive 2D Steady Simulation tool. Using these tools and the approximate values of flow regime transitions, a deeper understanding of the current state of knowledge in flow regime maps and heat transfer correlations in shear-driven internal condensing flows is obtained. The ideas presented here can be extended for other flow regimes of shear-driven flows as well. Analogous correlations can also be obtained for internal condensers in the gravity-driven and mixed-driven configuration.
Resumo:
This dissertation presents an effective quasi one-dimensional (1-D) computational simulation tool and a full two-dimensional (2-D) computational simulation methodology for steady annular/stratified internal condensing flows of pure vapor. These simulation tools are used to investigate internal condensing flows in both gravity as well as shear driven environments. Through accurate numerical simulations of the full two dimensional governing equations, results for laminar/laminar condensing flows inside mm-scale ducts are presented. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady (and unsteady flows). Moreover, a novel 1-D solution technique, capable of simulating condensing flows inside rectangular and circular ducts with different thermal boundary conditions is also presented. The results obtained from the 2-D scientific tool and 1-D engineering tool, are validated and synthesized with experimental results for gravity dominated flows inside vertical tube and inclined channel; and, also, for shear/pressure driven flows inside horizontal channels. Furthermore, these simulation tools are employed to demonstrate key differences of physics between gravity dominated and shear/pressure driven flows. A transition map that distinguishes shear driven, gravity driven, and “mixed” driven flow zones within the non-dimensional parameter space that govern these duct flows is presented along with the film thickness and heat transfer correlations that are valid in these zones. It has also been shown that internal condensing flows in a micro-meter scale duct experiences shear driven flow, even in different gravitational environments. The full 2-D steady computational tool has been employed to investigate the length of annularity. The result for a shear driven flow in a horizontal channel shows that in absence of any noise or pressure fluctuation at the inlet, the onset of non-annularity is partly due to insufficient shear at the liquid-vapor interface. This result is being further corroborated/investigated by R. R. Naik with the help of the unsteady simulation tool. The condensing flow results and flow physics understanding developed through these simulation tools will be instrumental in reliable design of modern micro-scale and spacebased thermal systems.
Resumo:
Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.
Resumo:
Computational models for the investigation of flows in deformable tubes are developed and implemented in the open source computing environment OpenFOAM. Various simulations for Newtonian and non-Newtonian fluids under various flow conditions are carried out and analyzed. First, simulations are performed to investigate the flow of a shear-thinning, non-Newtonian fluid in a collapsed elastic tube and comparisons are made with experimental data. The fluid is modeled by means of the Bird-Carreau viscosity law. The computational domain of the deformed tube is constructed from data obtained via computer tomography imaging. Comparison of the computed velocity fields with the ultrasound Doppler velocity profile measurements show good agreement, as does the adjusted pressure drop along the tube's axis. Analysis of the shear rates show that the shear-thinning effect of the fluid becomes relevant in the cross-sections with the biggest deformation. The peristaltic motion is simulated by means of upper and lower rollers squeezing the fluid along a tube. Two frames of reference are considered. In the moving frame the computational domain is fixed and the coordinate system is moving with the roller speed, and in the fixed frame the roller is represented by a deforming mesh. Several two-dimensional simulations are carried out for Newtonian and non-Newtonian fluids. The effect of the shear-thinning behavior of the fluid on the transport efficiency is examined. In addition, the influence of the roller speed and the gap width between the rollers on the xxvii transport efficiency is discussed. Comparison with experimental data is also presented and different types of moving waves are implemented. In addition, the influence of the roller speed and the gap width between the rollers on the transport efficiency is discussed. Comparison with experimental data is also presented and different types of moving waves are implemented.