2 resultados para Tree transplantation methods

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background mortality is an essential component of any forest growth and yield model. Forecasts of mortality contribute largely to the variability and accuracy of model predictions at the tree, stand and forest level. In the present study, I implement and evaluate state-of-the-art techniques to increase the accuracy of individual tree mortality models, similar to those used in many of the current variants of the Forest Vegetation Simulator, using data from North Idaho and Montana. The first technique addresses methods to correct for bias induced by measurement error typically present in competition variables. The second implements survival regression and evaluates its performance against the traditional logistic regression approach. I selected the regression calibration (RC) algorithm as a good candidate for addressing the measurement error problem. Two logistic regression models for each species were fitted, one ignoring the measurement error, which is the “naïve” approach, and the other applying RC. The models fitted with RC outperformed the naïve models in terms of discrimination when the competition variable was found to be statistically significant. The effect of RC was more obvious where measurement error variance was large and for more shade-intolerant species. The process of model fitting and variable selection revealed that past emphasis on DBH as a predictor variable for mortality, while producing models with strong metrics of fit, may make models less generalizable. The evaluation of the error variance estimator developed by Stage and Wykoff (1998), and core to the implementation of RC, in different spatial patterns and diameter distributions, revealed that the Stage and Wykoff estimate notably overestimated the true variance in all simulated stands, but those that are clustered. Results show a systematic bias even when all the assumptions made by the authors are guaranteed. I argue that this is the result of the Poisson-based estimate ignoring the overlapping area of potential plots around a tree. Effects, especially in the application phase, of the variance estimate justify suggested future efforts of improving the accuracy of the variance estimate. The second technique implemented and evaluated is a survival regression model that accounts for the time dependent nature of variables, such as diameter and competition variables, and the interval-censored nature of data collected from remeasured plots. The performance of the model is compared with the traditional logistic regression model as a tool to predict individual tree mortality. Validation of both approaches shows that the survival regression approach discriminates better between dead and alive trees for all species. In conclusion, I showed that the proposed techniques do increase the accuracy of individual tree mortality models, and are a promising first step towards the next generation of background mortality models. I have also identified the next steps to undertake in order to advance mortality models further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.