10 resultados para Transport Construction Project
em Digital Commons - Michigan Tech
Resumo:
The challenges posed by global climate change are motivating the investigation of strategies that can reduce the life cycle greenhouse gas (GHG) emissions of products and processes. While new construction materials and technologies have received significant attention, there has been limited emphasis on understanding how construction processes can be best managed to reduce GHG emissions. Unexpected disruptive events tend to adversely impact construction costs and delay project completion. They also tend to increase project GHG emissions. The objective of this paper is to investigate ways in which project GHG emissions can be reduced by appropriate management of disruptive events. First, an empirical analysis of construction data from a specific highway construction project is used to illustrate the impact of unexpected schedule delays in increasing project GHG emissions. Next, a simulation based methodology is described to assess the effectiveness of alternative project management strategies in reducing GHG emissions. The contribution of this paper is that it explicitly considers projects emissions, in addition to cost and project duration, in developing project management strategies. Practical application of the method discussed in this paper will help construction firms reduce their project emissions through strategic project management, and without significant investment in new technology. In effect, this paper lays the foundation for best practices in construction management that will optimize project cost and duration, while minimizing GHG emissions.
Resumo:
Information management is a key aspect of successful construction projects. Having inaccurate measurements and conflicting data can lead to costly mistakes, and vague quantities can ruin estimates and schedules. Building information modeling (BIM) augments a 3D model with a wide variety of information, which reduces many sources of error and can detect conflicts before they occur. Because new technology is often more complex, it can be difficult to effectively integrate it with existing business practices. In this paper, we will answer two questions: How can BIM add value to construction projects? and What lessons can be learned from other companies that use BIM or other similar technology? Previous research focused on the technology as if it were simply a tool, observing problems that occurred while integrating new technology into existing practices. Our research instead looks at the flow of information through a company and its network, seeing all the actors as part of an ecosystem. Building upon this idea, we proposed the metaphor of an information supply chain to illustrate how BIM can add value to a construction project. This paper then concludes with two case studies. The first case study illustrates a failure in the flow of information that could have prevented by using BIM. The second case study profiles a leading design firm that has used BIM products for many years and shows the real benefits of using this program.
Resumo:
During the project, managers encounter numerous contingencies and are faced with the challenging task of making decisions that will effectively keep the project on track. This task is very challenging because construction projects are non-prototypical and the processes are irreversible. Therefore, it is critical to apply a methodological approach to develop a few alternative management decision strategies during the planning phase, which can be deployed to manage alternative scenarios resulting from expected and unexpected disruptions in the as-planned schedule. Such a methodology should have the following features but are missing in the existing research: (1) looking at the effects of local decisions on the global project outcomes, (2) studying how a schedule responds to decisions and disruptive events because the risk in a schedule is a function of the decisions made, (3) establishing a method to assess and improve the management decision strategies, and (4) developing project specific decision strategies because each construction project is unique and the lessons from a particular project cannot be easily applied to projects that have different contexts. The objective of this dissertation is to develop a schedule-based simulation framework to design, assess, and improve sequences of decisions for the execution stage. The contribution of this research is the introduction of applying decision strategies to manage a project and the establishment of iterative methodology to continuously assess and improve decision strategies and schedules. The project managers or schedulers can implement the methodology to develop and identify schedules accompanied by suitable decision strategies to manage a project at the planning stage. The developed methodology also lays the foundation for an algorithm towards continuously automatically generating satisfactory schedule and strategies through the construction life of a project. Different from studying isolated daily decisions, the proposed framework introduces the notion of {em decision strategies} to manage construction process. A decision strategy is a sequence of interdependent decisions determined by resource allocation policies such as labor, material, equipment, and space policies. The schedule-based simulation framework consists of two parts, experiment design and result assessment. The core of the experiment design is the establishment of an iterative method to test and improve decision strategies and schedules, which is based on the introduction of decision strategies and the development of a schedule-based simulation testbed. The simulation testbed used is Interactive Construction Decision Making Aid (ICDMA). ICDMA has an emulator to duplicate the construction process that has been previously developed and a random event generator that allows the decision-maker to respond to disruptions in the emulation. It is used to study how the schedule responds to these disruptions and the corresponding decisions made over the duration of the project while accounting for cascading impacts and dependencies between activities. The dissertation is organized into two parts. The first part presents the existing research, identifies the departure points of this work, and develops a schedule-based simulation framework to design, assess, and improve decision strategies. In the second part, the proposed schedule-based simulation framework is applied to investigate specific research problems.
Resumo:
The Environmental Health (EH) program of Peace Corps (PC) Panama and a non-governmental organization (NGO) Waterlines have been assisting rural communities in Panama gain access to improved water sources through the practice of community management (CM) model and participatory development. Unfortunately, there is little information available on how a water system is functioning once the construction is complete and the volunteer leaves the community. This is a concern when the recent literature suggests that most communities are not able to indefinitely maintain a rural water system (RWS) without some form of external assistance (Sara and Katz, 1997; Newman et al, 2002; Lockwood, 2002, 2003, 2004; IRC, 2003; Schweitzer, 2009). Recognizing this concern, the EH program director encouraged the author to complete a postproject assessment of the past EH water projects. In order to carry out the investigation, an easy to use monitoring and evaluation tool was developed based on literature review and the author’s three years of field experience in rural Panama. The study methodology consists of benchmark scoring systems to rate the following ten indicators: watershed, source capture, transmission line, storage tank, distribution system, system reliability, willingness to pay, accounting/transparency, maintenance, and active water committee members. The assessment of 28 communities across the country revealed that the current state of physical infrastructure, as well as the financial, managerial and technical capabilities of water committees varied significantly depending on the community. While some communities are enjoying continued service and their water committee completing all of its responsibilities, others have seen their water systems fall apart and be abandoned. Overall, the higher score were more prevalent for all ten indicators. However, even the communities with the highest scores requested some form of additional assistance. The conclusion from the assessment suggests that the EH program should incorporate an institutional support mechanism (ISM) to its sector policy in order to systematically provide follow-up support to rural communities in Panama. A full-time circuit rider with flexible funding would be able to provide additional technical support, training and encouragement to those communities in need.
Resumo:
The purpose of this study is to provide a procedure to include emissions to the atmosphere resulting from the combustion of diesel fuel during dredging operations into the decision-making process of dredging equipment selection. The proposed procedure is demonstrated for typical dredging methods and data from the Illinois Waterway as performed by the U.S. Army Corps of Engineers, Rock Island District. The equipment included in this study is a 16-inch cutterhead pipeline dredge and a mechanical bucket dredge used during the 2005 dredging season on the Illinois Waterway. Considerable effort has been put forth to identify and reduce environmental impacts from dredging operations. Though environmental impacts of dredging have been studied no efforts have been applied to the evaluation of air emissions from comparable types of dredging equipment, as in this study. By identifying the type of dredging equipment with the lowest air emissions, when cost, site conditions, and equipment availability are comparable, adverse environmental impacts can be minimized without compromising the dredging project. A total of 48 scenarios were developed by varying the dredged material quantity, transport distance, and production rates. This produced an “envelope” of results applicable to a broad range of site conditions. Total diesel fuel consumed was calculated using standard cost estimating practices as defined in the U.S. Army Corps of Engineers Construction Equipment Ownership and Operating Expense Schedule (USACE, 2005). The diesel fuel usage was estimated for all equipment used to mobilize and/or operate each dredging crew for every scenario. A Limited Life Cycle Assessment (LCA) was used to estimate the air emissions from two comparable dredging operations utilizing SimaPro LCA software. An Environmental Impact Single Score (EISS) was the SimaPro output selected for comparison with the cost per CY of dredging, potential production rates, and transport distances to identify possible decision points. The total dredging time was estimated for each dredging crew and scenario. An average hourly cost for both dredging crews was calculated based on Rock Island District 2005 dredging season records (Graham 2007/08). The results from this study confirm commonly used rules of thumb in the dredging industry by indicating that mechanical bucket dredges are better suited for long transport distances and have lower air emissions and cost per CY for smaller quantities of dredged material. In addition, the results show that a cutterhead pipeline dredge would be preferable for moderate and large volumes of dredged material when no additional booster pumps are required. Finally, the results indicate that production rates can be a significant factor when evaluating the air emissions from comparable dredging equipment.
Resumo:
With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system. With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system.
Resumo:
The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.
Resumo:
The objective of this research is to investigate the consequences of sharing or using information generated in one phase of the project to subsequent life cycle phases. Sometimes the assumptions supporting the information change, and at other times the context within which the information was created changes in a way that causes the information to become invalid. Often these inconsistencies are not discovered till the damage has occurred. This study builds on previous research that proposed a framework based on the metaphor of ‘ecosystems’ to model such inconsistencies in the 'supply chain' of life cycle information (Brokaw and Mukherjee, 2012). The outcome of such inconsistencies often results in litigation. Therefore, this paper studies a set of legal cases that resulted from inconsistencies in life cycle information, within the ecosystems framework. For each project, the errant information type, creator and user of the information and their relationship, time of creation and usage of the information in the life cycle of the project are investigated to assess the causes of failure of precise and accurate information flow as well as the impact of such failures in later stages of the project. The analysis shows that the misleading information is mostly due to lack of collaboration. Besides, in all the studied cases, lack of compliance checking, imprecise data and insufficient clarifications hinder accurate and smooth flow of information. The paper presents findings regarding the bottleneck of the information flow process during the design, construction and post construction phases. It also highlights the role of collaboration as well as information integration and management during the project life cycle and presents a baseline for improvement in information supply chain through the life cycle of the project.
Resumo:
In Panama, one of the Environmental Health (EH) Sector’s primary goals is to improve the health of rural Panamanians by helping them to adopt behaviors and practices that improve access to and use of sanitation systems. In complying with this goal, the EH sector has used participatory development models to improve hygiene and increase access to latrines through volunteer managed latrine construction projects. Unfortunately, there is little understanding of the long term sustainability of these interventions after the volunteers have completed their service. With the Peace Corps adapting their Monitoring, Reporting, and Evaluation procedures, it is appropriate to evaluate the sustainability of sanitation interventions offering recommendations for the adaptions of the EH training program, project management, and evaluation procedures. Recognizing the need for evaluation of past latrine projects, the author performed a post project assessment of 19 pit latrine projects using participatory analysis methodologies. First, the author reviewed volunteers’ perspectives of pit latrine projects in a survey. Then, for comparison, the author performed a survey of latrine projects using a benchmarking scoring system to rate solid waste management, drainage, latrine siting, latrine condition, and hygiene. It was observed that the Sanitation WASH matrix created by the author was an effective tool for evaluating the efficacy of sanitation interventions. Overall more than 75%, of latrines constructed were in use. However, there were some areas where improvements could be made for both latrine construction and health and hygiene. The latrines scored poorly on the indicators related to the privacy structure and seat covers. Interestingly those are the two items least likely to be included in project subsidies. Furthermore, scores for hygiene-related indicators were low; particularly those related to hand washing and cleanliness of the kitchen, indicating potential for improvement in hygiene education. Based on these outcomes, the EH sector should consider including subsidies and standardized designs for privacy structures and seat covers for latrines. In addition, the universal adoption of contracts and/or deposits for project beneficiaries is expected to improve the completion of latrines. In order to address the low scores in the health and hygiene indicators, the EH sector should adapt volunteer training, in addition to standardizing health and hygiene intervention procedures. In doing so, the sector should mimic the Community Health Club model that has shown success in improving health and hygiene indicators, as well as use a training session plan format similar to those in the Water Committee Seminar manual. Finally, the sector should have an experienced volunteer dedicated to program oversight and post-project monitoring and evaluation.
Resumo:
This research evaluated an Intelligent Compaction (IC) unit on the M-189 highway reconstruction project at Iron River, Michigan. The results from the IC unit were compared to several traditional compaction measurement devices including Nuclear Density Gauge (NDG), Geogauge, Light Weight Deflectometer (LWD), Dynamic Cone Penetrometer (DCP), and Modified Clegg Hammer (MCH). The research collected point measurements data on a test section in which 30 test locations on the final Class II sand base layer and the 22A gravel layer. These point measurements were compared with the IC measurements (ICMVs) on a point-to-point basis through a linear regression analysis. Poor correlations were obtained among different measurements points using simple regression analysis. When comparing the ICMV to the compaction measurements points. Factors attributing to the weak correlation include soil heterogeneity, variation in IC roller operation parameters, in-place moisture content, the narrow range of the compaction devices measurement ranges and support conditions of the support layers. After incorporating some of the affecting factors into a multiple regression analysis, the strength of correlation significantly improved, especially on the stiffer gravel layer. Measurements were also studied from an overall distribution perspective in terms of average, measurement range, standard deviation, and coefficient of variance. Based on data analysis, on-site project observation and literature review, conclusions were made on how IC performed in regards to compaction control on the M-189 reconstruction project.